1

SUPPLEMENTARY MATERIAL TO

First cobalt complexes with methyl pyruvate semi/thiosemicarbazone – synthesis, physico-chemical and structural characterization MARKO V. RODIĆ^{1*#}, VUKOSLAVA MIŠKOV-PAJIĆ², VUKADIN M. LEOVAC¹, MIRJANA M. RADANOVIĆ^{1#}, LJILJANA S. VOJINOVIĆ-JEŠIĆ^{1#}, SVETLANA K.

6 BELOŠEVIĆ^{3#}, ŽELJKO K. JAĆIMOVIĆ⁴, VUKOSAVA ŽIVKOVIĆ-RADOVANOVIĆ^{5#}

⁷ ¹University of Novi Sad, Faculty of Sciences, Trg D. Obradovića 3, 21000 Novi Sad, Serbia,

8 ²University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, ³Faculty of

9 Technical Sciences, University of Priština, Knjaza Miloša 7, 38220 Kosovska Mitrovica,

10 Serbia, ⁴Faculty of Metallurgy and Technology, University of Montenegro, Bulevar Dž.

Vašingtona bb, 81000 Podgorica, Montenegro and ⁵Faculty of Chemistry, University of
 Belgrade, P.O. Box 51, 11158 Belgrade, Serbia

13

ANALYTICAL AND SPECTRAL DATA FOR 1-4

14 $[Co(Hmps)(H_2O)Cl_2]$ (1). Yield: 52 mg (85 %). Anal. Calc. for CoC₅H₁₁N₃O₄Cl₂: C, 15 19.56; H, 3.59; N, 13.69. Found: C, 19.29; H, 3.49; N, 13.35%. Conductivity $[\Lambda_M/\Omega^{-1} \text{ cm}^2$ 16 mol⁻¹]: 140 (in MeOH). $\mu_{\text{eff}} = 5.02 \,\mu_{\text{B}}$. Selected IR bands $[\tilde{V}/\text{cm}^{-1}]$: v(OH, NH₂, NH): 3414vs, 17 3305s, 3231ms, 3124ms; v(C=O): 1683vs, 1635s; v(C=N): 1583m.

18 [$Co(Hmps)(H_2O)Br_2$] (2). Yield: 90 mg (57 %). Anal. Calc. for CoC₅H₁₁N₃O₄,Br₂: C, 19 15.17; H, 2.78; N, 10.61. Found: C, 15.08; H, 2.57; N, 10.55. Conductivity [Λ_M/Ω^{-1} cm² mol⁻¹]: 20 170 (in MeOH). $\mu_{eff} = 4.98 \,\mu_B$. Selected IR bands [\tilde{V} /cm⁻¹]: v(OH, NH₂, NH): 3408vs, 3305vs, 21 3228s, 3126s; v(C=O): 1685vs, 1634vs; v(C=N): 1584m.

22 $[Co(Hmpt)_2][CoCl_4] \cdot 2H_2O$ (3). Yield: 50 mg (83 %). Anal. Calc. for 23 $Co_2C_{10}H_{22}N_6O_6S_2Cl_4$: C, 18.59; H, 3.43; N, 13.01; S, 9.92. Found: C, 18.21; H, 3.49; N, 12.87; 24 S, 9.36%. Conductivity $[\Lambda_M/\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}]$: 222 (in MeOH). $\mu_{eff} = 4.41 \mu_B$. Selected IR bands

^{*} Corresponding author. E-mail: marko.rodic@dh.uns.ac.rs

[#] Serbian Chemical Society member

- 25 $[\tilde{V}/cm^{-1}]$: v(OH): 3400ms, v(NH₂, NH): 3338s, 3261s, 3150vs; v(C=O): 1681vs; v(C=N):
- 26 1621vs, 1605vs; v(C=S): 958w, 855ms.
- 27 $[Co(Hmpt)_2]Br_2 \cdot Me_2CO(4)$. Yield: 68 mg (55 %). Anal. Calc. for CoC₁₃H₂₄N₆O₅S₂Br₂: 28 C, 24.89; H, 3.83; N, 13.40; S, 10.22. Found: C, 24.68; H, 3.57; N, 13.55; S, 10.76%. 29 Conductivity $[\Lambda_M/\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}]$: 180 (in MeOH). $\mu_{\text{eff}} = 4.36 \,\mu_{\text{B}}$. Selected IR bands $[\tilde{V}/\text{cm}^{-1}]$: 30 $v(\text{NH}_2, \text{NH})$: 3431ms, 3261ms, 3112s; v(C=O): 1703m, 1672s; v(C=N): 1624s, 1606s; v(C=S): 31 958w, 857w.

	2	3	4
Chemical formula	$C_5H_{11}Br_2CoN_3O_4$	$C_{10}H_{22}Co_2Cl_4N_6O_6S_2$	$C_{13}H_{24}Br_2CoN_6O_5S_2$
$M_{ m r}$	395.92	646.11	627.23
Crystal system	Monoclinic	Orthorhombic	Triclinic
Space group	$P2_{1}/c$	Pccn	$P\overline{1}$
Temperature, K	294	294	294
a∕Å	7.8004(2)	14.8546(3)	10.3796(3)
b/Å	13.1957(4)	19.6095(4)	10.9107(4)
c / Å	11.9046(3)	18.0338(5)	12.5905(5)
α / °	90	90	101.435(3)
β / °	94.357(3)	90	101.558(3)
y/°	90	90	115.576(3)
$V/Å^3$	1221.82(6)	5253.1 (2)	1192.86(8)
Ζ	4	8	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
μ / mm^{-1}	7.94	1.86	4.28
Crystal size, mm	0.59 imes 0.24 imes 0.19	0.53 imes 0.22 imes 0.07	$0.39 \times 0.25 \times 0.05$
Absorption correction	Analytical	Multi-scan	Multi-scan
T_{\min}, T_{\max}	0.037, 0.310	0.832, 1	0.465, 1
Measured reflections	13155	21982	18787
Independent reflections	2501	6243	5636
Observed reflections $[I > 2\sigma(I)]$	2213	4586	4619
$R_{\rm int}$	0.026	0.031	0.024
$(\sin \theta / \lambda)_{\rm max} / {\rm \AA}^{-1}$	0.626	0.683	0.685
$R[F^2 > 2\sigma(F^2)]$	0.025	0.037	0.027
$wR(F^2)$	0.057	0.092	0.063
S	1.09	1.02	1.02
Parameters	153	257	286
Restraints	6	0	б
H-atom treatment	Mixed	Constrained	Mixed
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.37, -0.40	0.64, -0.48	0.50, -0.51

Table S-I. Pertinent crystal and refinement details for 2, 3, and 4.

34 TABLE S–II. Cremer & Pople puckering parameters for **3** and **4**

Ring	Q_2 / Å	φ_2 / °	Pucker descriptor
3			
Co1-S1A-C3A-N2A-N1A	0.1979(16)	9.2(7)	Twisted on Co1–S1A
Co1-S1B-C3B-N2B-N1B	0.1230(18)	28.2(10)	Envelope on S1B
4			
Co1-S1A-C3A-N2A-N1A	0.3725(14)	7.2(3)	Envelope on Co1
Co1-S1B-C3B-N2B-N1B	0.1578(15)	19.7(7)	Twisted on Co1–S1B

35 TABLE S–III. Polyhedral distortion indices for 2–4

	2	3	4
Average bond length / Å	2.2766	2.2198	2.2149
Polyhedral volume / $Å^3$	14.9428	13.7791	13.3587
Distortion index	0.07207	0.05141	0.05276
Quadratic elongation $/(^{\circ})^2$	1.0415	1.0420	1.0591
Bond angle variance	112.4344	126.9278	175.4050

36 Distortion index, $D = \frac{1}{n} \sum_{i=1}^{n} \frac{|l_i - l_{av}|}{l_{av}}$, where l_i is the distance from the central atom to the *i*th coordinating atom, and

37 $l_{\rm av}$ is the average bond length.

38 Quadratic elongation, $\langle \lambda \rangle = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{l_i}{l_0} \right)^2$, where l_i is the distance from the central atom to the *i*th coordinating atom,

and l_0 is the center-to-vertex distance of a regular polyhedron of the same volume.

40 Bond angle variance, $\sigma^2 = \frac{1}{m-1} \sum_{i=1}^m (\phi_i - \phi_0)^2$, where *m* is the number of bond angles within the polyhedron, ϕ_i is

41 the *i*th bond angle, and ϕ_0 is the ideal bond angle for a regular polyhedron (90° for an octahedron).

	$[Co(Hmpt)_2][CoCl_4] \cdot 2H_2O(3)$	$[Co(Hmpt)_2]Br_2 \cdot Me_2CO(4)$	Hmpt
Co1–O1A	2.1803(19)	2.1472(16)	
Co1–O1B	2.1878(19)	2.1857(15)	
Co1–N1A	2.092(2)	2.1009(16)	
Co1–N1B	2.077(2)	2.0751(16)	
Co1–S1A	2.3931(8)	2.3879(7)	
Co1–S2B	2.3888(8)	2.3924(6)	
O1A–C1A	1.217(3)	1.227(3)	1.208(4)
O1B-C1B	1.220(3)	1.219(3)	
O2A-C1A	1.311(3)	1.310(3)	1.337(4)
O2B-C1B	1.311(3)	1.304(3)	
C1A–C2A	1.496(4)	1.491(3)	1.506(6)
C1B-C2B	1.487(4)	1.499(3)	
N1A-C2A	1.281(3)	1.280(3)	1.285(4)
N1B-C2B	1.290(3)	1.275(3)	
N1A-N2A	1.354(3)	1.350(2)	1.367(4)
N1B-N2B	1.349(3)	1.357(2)	
N2A-C3A	1.361(3)	1.367(3)	1.363(4)
N2B-C3B	1.359(3)	1.354(3)	
S1A-C3A	1.688(3)	1.698(2)	1.684(4)
S1B-C3B	1.698(3)	1.703(2)	
N3A-C3A	1.315(3)	1.305(3)	1.325(5)
N3B-C3B	1.314(3)	1.307(3)	

42 TABLE S-IV. Structural parameters (Å, $^{\circ}$) of the complexes **3** and **4**, as well as the ligand Hmpt

43

44 TABLE S-V. Hydrogen-bond geometry (Å, $^{\circ}$) in complexes **3** and **4**

$D-H\cdots A$	D–H	H···A	D···A	$D-H\cdots A$	Symmetry operation on A
$\frac{2}{3}$	2 11		2		Symmouly operation on H
N2A-H2A····Cl1	0.86	2.47	3.185(2)	141	
$N2B-H2B\cdots Cl2^{i}$	0.86	2.44	3.259(2)	159	x+1/2, y-1/2, -z+1
N3A-H3A…Cl1	0.86	2.58	3.271(3)	138	
N3A-H3B····Cl3 ⁱⁱ	0.86	2.38	3.232(3)	171	-x+1, -y+1, -z+1
N3B-H3D····Cl2 ⁱ	0.86	2.66	3.442(3)	152	x+1/2, y-1/2, -z+1
N3B-H3D····O1A ⁱⁱⁱ	0.86	2.57	3.079(3)	119	-x+1, -y, -z+1
N3B-H3C····Cl4 ^{iv}	0.86	2.39	3.244(3)	176	x, -y+1/2, z-1/2
4					
N2A-H2A····Br1	0.86(2)	2.53(2)	3.3221(18)	155(2)	
N3A–H3A…Br1	0.85(2)	2.50(2)	3.290(2)	154(3)	
N3A–H3B····Br2 ⁱ	0.86(2)	2.50(2)	3.350(2)	173(3)	-x+1, -y+1, -z+1
N2B-H2B····Br2	0.84(2)	2.46(2)	3.2664(17)	160(2)	
N3B-H3D····Br2	0.85(2)	2.65(2)	3.427(2)	153(2)	
N3B–H3C···Br1 ⁱⁱ	0.85(2)	2.56(2)	3.405(2)	176(2)	-x+1, -y+2, -z+1

45