1	SUPPLEMENTARY MATERIAL
2	for
3	Novel (–)-goniofufurone mimics: synthesis, antiproliferative activity and SAR analysis
4	
5 6	BOJANA SREĆO ZELENOVIĆ ¹ , SLAĐANA KEKEZOVIĆ ¹ , MIRJANA POPSAVIN ¹ , VESNA KOJIĆ ² , GORAN BENEDEKOVIĆ ¹ and VELIMIR POPSAVIN ^{1,3} *
7 8	¹ Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
9	² Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
10	³ Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia
11	
12	
13	TABLE OF CONTENTS
14	
15	PHYSICAL AND SPECTRAL DATA OF SYNTHESIZED COMPOUNDS2
16	NMR SPECTRA OF FINAL PRODUCTS7
17	SAR ANALYSIS
18	
19	

3,6-Anhydro-5-O-benzyl-7-O-hexyl-2-deoxy-L-ido-heptono-1,4-lactone (12). Colourless 23 oil, $[\alpha]_D = -17.4$ (c 0.5, CHCl₃); $R_f = 0.14$ (3:2 light petroleum/Et₂O). IR (CHCl₃): v_{max} 1790 24 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3H, J=6.8 Hz, CH₃), 1.20–1.39 (m, 6H, 25 3×CH₂ from side chain), 1.51–1.65 (m, 2H, OCH₂CH₂(CH₂)₃CH₃), 2.69 (dd, 1H, J_{2a,3}=2.7, 26 J_{2a,2b}=18.8 Hz, H-2a), 2.75 (dd, 1H, J_{2b,3}=4.7, J_{2a,2b}=18.8 Hz, H-2b), 3.46 (m, 2H, 27 28 OCH₂(CH₂)₄CH₃), 3.75 (d, 2H, J_{6,7}=5.5 Hz, H-7), 4.21 (d, 1H, J_{5,6}=4.1 Hz, H-5), 4.26 (td, 1H, J_{5,6}=4.1, J_{6,7}=5.5 Hz H-6), 4.60 and 4.70 (2×d, 2H, J_{gem}=11.9 Hz, CH₂Ph), 4.92 (d, 1H, 29 J_{3,4}=4.7 Hz, H-4), 4.98 (td, 1H, J_{3,4}=4.7, J_{2a,3}=2.9, J_{2b,3}=4.6 Hz, H-3), 7.30–7.45 (m, 5H, Ph). 30 ¹³C NMR (100 MHz, CDCl₃): δ 14.06 (CH₃), 22.61, 25.80, 29.62, 31.67 (4×CH₂ from side 31 chain), 36.03 (C-2), 68.57 (C-7), 71.86 (OCH₂(CH₂)₄CH₃), 72.76 (CH₂Ph), 76.83 (C-3), 32 79.65 (C-6), 81.51 (C-5), 85.52 (C-4), 127.75, 128.17, 128.60, 137.17 (Ph), 175.35 (C=O). 33 HRMS-Heated ESI-Orbitrap: m/z 371.18272 (M⁺+Na), calcd. for C₂₀H₂₈NaO₅: 371.18344. 34

3,6-Anhydro-5-O-benzyl-7-O-heptyl-2-deoxy-L-ido-heptono-1,4-lactone (13). Colourless 35 oil; $[\alpha]_D = -16.0$ (c 0.5, CHCl₃); $R_f = 0.28$ (1:1 light petroleum/Et₂O). IR (CHCl₃): v_{max} 1789 36 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3H, J=6.8 Hz, CH₃), 1.19–1.41 (m, 8H, 37 4×CH₂ from side chain), 1.58 (m, 2H, OCH₂CH₂(CH₂)₄CH₃), 2.69 (dd, 1H, J_{2a,2b}=18.9, 38 J_{2a,3}=2.6 Hz, H-2a), 2.74 (dd, 1H, J_{2a,2b}=18.9, J_{2b,3}=4.7 Hz, H-2b), 3.38-3.54 (m, 2H, 39 OCH₂(CH₂)₅CH₃), 3.65 (d, 2H, J_{6.7}=5.5 Hz, H-7), 4.21 (d, 1H, J_{5.6}=4.0 Hz, H-5), 4.27 (dd, 40 1H, J_{5,6}=4.1, J_{6,7}=5.5 Hz, H-6), 4.60 and 4.70 (2×d, 2H, J_{gem}=11.9 Hz, CH₂Ph), 4.92 (d, 1H, 41 J_{3,4}=4.7 Hz, H-4), 4.98 (td, 1H, J_{3,4}=4.6, J_{2a,3}=2.9, J_{2b,3}=4.6 Hz, H-3), 7.29–7.40 (m, 5H, Ph). 42 ¹³C NMR (100 MHz, CDCl₃): δ 14.10 (CH₃), 22.62, 26.08, 29.14, 29.66, 31.81 (5×CH₂ from 43 side chain), 36.03 (C-2), 68.57 (C-7), 71.86 (OCH₂(CH₂)₅CH₃), 72.76 (CH₂Ph), 76.83 (C-3), 44 79.65 (C-6), 81.51 (C-5), 85.53 (C-4), 127.75, 128.17, 128.60, 137.17 (Ph), 175.35 (C=O). 45 HRMS-Heated ESI-Orbitrap: *m/z* 385.19874 (M⁺+Na), calcd. for C₂₁H₃₀NaO₅: 385.19909. 46

3,6-Anhydro-5-O-benzyl-7-O-octyl-2-deoxy-L-ido-heptono-1,4-lactone (14). Colourless 47 oil, $[\alpha]_D = -14.8$ (c 0.5, CHCl₃); $R_f = 0.25$ (1:1 light petroleum/Et₂O). IR (CHCl₃): v_{max} 1790 48 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3H, J=6.9 Hz, CH₃), 1.22–1.38 (m, 10H, 49 50 5×CH₂ from side chain), 1.58 (m, 2H, OCH₂CH₂(CH₂)₅CH₃), 2.68 (dd, 1H, J_{2a,2b}=18.7, J_{2a,3}=2.5 Hz, H-2a), 2.71 (dd, 1H, J_{2a,2b}=18.7, J_{2b,3}=4.8 Hz, H-2b), 3.37-3.54 (m, 2H, 51 OCH₂(CH₂)₆CH₃), 3.65 (d, 2H, J_{6.7}=5.5 Hz, H-7), 4.20 (d, 1H, J_{5.6}=4.0 Hz, H-5), 4.25 (td, 52 1H, J_{5,6}=4.1, J_{6,7}=5.5 Hz, H-6), 4.60 and 4.69 (2×d, 2H, J_{gem}=11.9 Hz, CH₂Ph), 4.92 (d, 1H, 53 J_{3,4}=4.7 Hz, H-4), 4.97 (td, 1H, J_{3,4}=4.8, J_{2a,3}=2.5, J_{2b,3}=4.8 Hz, H-3), 7.29–7.43 (m, 5H, Ph). 54 55 ¹³C NMR (100 MHz, CDCl₃): δ 14.01 (CH₃), 22.56, 26.02, 29.16, 29.33, 29.56, 31.73 (6×CH₂ from side chain), 35.92 (C-2), 68.47 (C-7), 71.75 (OCH₂(CH₂)₆CH₃), 72.63 (CH₂Ph), 56 76.73 (C-3), 79.54 (C-6), 81.40 (C-5), 85.40 (C-4), 127.64, 128.05, 128.49. 137.10 (Ph), 57 175.26 (C=O). HRMS-Heated ESI-Orbitrap: m/z 399.21400 (M⁺+Na), calcd. for 58 C₂₂H₃₂NaO₅: 399.21474; *m/z* 415.18765 (M⁺+K), calcd. for C₂₂H₃₂KO₅: 415.18868. 59

60 **3,6-Anhydro-5-***O***-benzyl-7-***O***-nonyl-2-deoxy-L***-ido***-heptono-1,4-lactone** (**15**). Colourless 61 crystals, mp 34 °C (CH₂Cl₂/hexane), $[\alpha]_D = -10.8$ (*c* 0.75, CHCl₃), R_f=0.33 (1:1 Et₂O/light 62 petroleum). IR (film): v_{max} 1773 (C=O). ¹H NMR (250 MHz, CDCl₃): δ 0.89 (t, 3H, *J*=6.9 63 Hz, CH₃), 1.18–1.39 (m, 12H, 6×CH₂ from side chain), 1.57 (m, 2H, OCH₂CH₂(CH₂)₆CH₃), 64 2.66–2.76 (*pseudo* d, 2H, 2×H-2), 3.45 (m, 2H, OCH₂(CH₂)₇CH₃), 3.65 (d, 2H, *J*_{6,7}=5.4 Hz,

H-7), 4.20 (d, 1H, J_{5,6}=4.3 Hz, H-5), 4.26 (m, 1H, J_{5,6}=4.3, J_{6,7}=5.4 Hz, H-6), 4.59 and 4.69 65 $(2 \times d, 2H, J_{gem}=11.9 \text{ Hz}, CH_2\text{Ph}), 4.92 (d, 1H, J_{3,4}=4.1 \text{ Hz}, H-4), 4.98 (m, 1H, J_{3,2a}=2.8)$ 66 $J_{3,2b}=3.1, J_{3,4}=4.1$ Hz, H-3), 7.29–7.43 (m, 5H, Ph). ¹³C NMR (62.9 MHz, CDCl₃): δ 14.05 67 (Me), 22.60, 26.04, 29.20, 29.40, 29.48, 29.58 and 31.81 (7×CH₂) 35.94 (C-2), 68.49 (C-7), 68 69 71.78 (OCH₂(CH₂)₇CH₃), 72.66 (CH₂Ph), 76.75 (C-3), 79.57 (C-6), 81.42 (C-5), 85.44 (C-4), 70 127.67, 128.08, 128.51 and 137.10 (Ph), 175.29 (C-1). LRMS (ESI⁺): m/z 429 (M⁺+K), 413 71 (M⁺+Na), 391 (M⁺+H). HRMS (ESI⁺): *m/z* 391.2482 (M⁺+H), calcd. for C₂₃H₃₅O₅: 391.2479; m/z 408.2745 (M⁺+NH₄), calcd. for C₂₃H₃₈NO₅: 408.2744; m/z 413.2290 (M⁺+Na), calcd. for 72 C₂₃H₃₄NaO₅: 413.2298; *m/z*, 429.2034 (M⁺+K), calcd. for C₂₃H₃₄KO₅ 429.2038. 73 74 3,6-Anhydro-5-O-benzyl-7-O-decyl-2-deoxy-L-ido-heptono-1,4-lactone (16). Colourless

3

75 oil, $[\alpha]_D = -11.1$ (c 0.63, CHCl₃); R_f=0.44 (1:1 light petroleum/Et₂O). IR (film): v_{max} 1788 (C=O). ¹H NMR (250 MHz, CDCl₃): δ 0.89 (t, 3H, J=7.0 Hz, CH₃), 1.21–1.41 (m, 14H, 76 7×CH₂ from side chain), 1.49–1.64 (m, 2H, OCH₂CH₂(CH₂)₇CH₃), 2.72 (pseudo d, 2H, 2×H-77 78 2), 3.46 (m, 2H, OCH₂ from side chain), 3.65 (d, 2H, J_{6.7}=5.3 Hz, 2×H-7), 4.21 (d, 1H, 79 J_{5.6}=4.1 Hz, H-5), 4.26 (m, 1H, J_{5.6}=4.1, J_{6.7}=5.3 Hz, H-6), 4.60 and 4.70 (2×d, 2H, J_{gem}=11.9 80 Hz, CH₂Ph), 4.92 (d, 1H, J_{3.4}=4.7 Hz, H-4), 4.99 (m, 1H, J_{3.4}=4.7 Hz, H-3), 7.30–7.42 (m, 81 5H, Ph). ¹³C NMR (62.9 MHz, CDCl₃): δ 14.08 (Me), 22.66, 26.10, 29.30, 29.45, 29.55, 82 29.57, 29.63 and 31.87 (8×CH₂ from side chain), 36.00 (C-2), 68.53 (C-7), 71.84 (C-9), 83 72.74 (CH₂Ph), 76.79 (C-3), 79.62 (C-6), 81.50 (C-5), 85.51 (C-4), 127.71, 128.14, 128.56 84 and 137.15 (Ph), 175.29 (C-1). LRMS (CI): *m/z* 405 (M⁺+H). Anal. Found: C, 71.60; H, 9.29. 85 Calculated for C₂₄H₃₆O₅: C, 71.26; H, 8.97.

86 3,6-Anhydro-5-O-benzyl-7-O-undecyl-2-deoxy-L-ido-heptono-1,4-lactone (17). White crystals, mp 30–32 °C (CH₂Cl₂/hexane); $[\alpha]_D$ –12.8 (c 0.5, CHCl₃); $R_f = 0.38$ (3:2 light 87 petroleum/Et₂O). IR (CHCl₃): *v*_{max} 1788 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, 3H, 88 J=7.0 Hz, CH₃), 1.22–1.38 (m, 16H, 8×CH₂ from side chain), 1.57 (m, 2H, 89 90 OCH₂CH₂(CH₂)₈CH₃), 2.69 (dd, 1H, J_{2a,2b}=18.8, J_{2a,3}=2.7 Hz, H-2a), 2.75 (dd, 1H, 91 J_{2a,2b}=18.8, J_{2b,3}=4.7 Hz, H-2b), 3.39–3.53 (m, 2H, OCH₂(CH₂)₉CH₃), 3.66 (d, 2H, J_{6.7}=5.5 Hz, H-7), 4.21 (br. d, 1H, J_{5.6}=4.0 Hz, H-5), 4.26 (td, 1H, J_{5.6}=4.0, J_{6.7}=5.5 Hz, H-6), 4.62 and 92 4.71 (2×d, 2H, J_{gem}=11.9 Hz, CH₂Ph), 4.93 (dd, 1H, J_{3,4}=4.7, J_{4,5}=0.9 Hz, H-4), 4.98 (td, 1H, 93 $J_{3,4}=4.7, J_{2a,3}=2.8, J_{2b,3}=4.7$ Hz, H-3), 7.29–7.40 (m, 5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ 94 14.08 (CH₃), 22.64, 26.07, 29.29, 29.43, 29.55, 29.57, 29.60, 29.65 and 31.86 (9×CH₂ from 95 side chain), 35.97 (C-2), 68.51 (C-7), 71.81 (OCH₂(CH₂)₉CH₃), 72.70 (CH₂Ph), 76.77 (C-3), 96 79.59 (C-6), 81.45 (C-5), 85.47 (C-4), 127.69, 128.11, 128.54 and 137.12 (Ph), 175.29 97 (C=O). HRMS-Heated ESI-Orbitrap: m/z 441.26129 (M⁺+Na), calcd. for C₂₅H₃₈NaO₅: 98 441.26169; *m/z* 457.23465 (M⁺+K), calcd. for C₂₅H₃₈KO: 457.23563. 99

3,6-Anhydro-5-O-benzyl-7-O-dodecyl-2-deoxy-L-ido-heptono-1,4-lactone 100 (18). White needles, mp 45–46 °C (CH₂Cl₂/hexane); $[\alpha]_{\rm D} = -13.0$ (c 0.5, CHCl₃); $R_f = 0.25$ (3:2 light 101 petroleum/Et₂O). IR (CHCl₃): v_{max} 1788 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3H, 102 J=6.7 Hz, CH₃), 1.19–1.37 (m, 18H, 9×CH₂ from side chain), 1.57 (m, 2H, 103 OCH₂CH₂(CH₂)₉CH₃), 2.68 (dd, 1H, J_{2a,2b}=18.8, J_{2a,3}=2.7 Hz, H-2a), 2.74 (dd, 1H, 104 J_{2a,2b}=18.8, J_{2b,3}=4.8 Hz, H-2b), 3.40–3.52 (m, 2H, OCH₂(CH₂)₁₀CH₃), 3.64 (d, 2H, J_{6,7}=5.5 105 106 Hz, H-7), 4.21 (d, 1H, J_{5,6}=4.1 Hz, H-5), 4.27 (td, 1H, J_{5,6}=4.1, J_{6,7}=5.5 Hz, H-6), 4.60 and 4.70 (2×d, 2H, J_{gem}=11.9 Hz, CH₂Ph), 4.92 (dd, 1H, J_{3,4}=4.7, J_{4,5}=0.8 Hz, H-4), 4.97 (td, 1H, 107 $J_{3,4}=4.7, J_{2a,3}=2.8, J_{2b,3}=4.7$ Hz, H-3), 7.29–7.40 (m, 5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ 108 14.07 (CH₃), 22.63, 26.06, 29.29, 29.42, 29.55, 29.56, 29.58, 29.60, 29.61, 31.86 (10×CH₂)

110 from side chain), 35.96 (C-2), 68.50 (C-7), 71.79 (OCH₂(CH₂)₁₀CH₃), 72.68 (CH₂Ph), 76.76 111 (C-3), 79.58 (C-6), 81.44 (C-5), 85.45 (C-4), 127.68, 128.09, 128.53, 137.12 (Ph), 175.28 112 (C=O). HRMS-Heated ESI-Orbitrap: m/z 455.27712 (M⁺+Na), calcd. for C₂₆H₄₀NaO₅: 113 455.27734; m/z 471.25088 (M⁺+K), calcd. for C₂₆H₄₀KO₅: 471.25128.

3,6-Anhydro-5-O-benzyl-7-O-tridecyl-2-deoxy-L-ido-heptono-1,4-lactone (19). White 114 needles, mp 44–46 °C (CH₂Cl₂/hexane), $[\alpha]_{\rm D} = -13.0$ (c 0.5, CHCl₃); $R_f = 0.13$ (7:3 light 115 petroleum/Et₂O). IR (KBr): v_{max} 1791 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3H, 116 J=6.8 Hz, CH₃), 1.20–1.37 (m, 20H, 10×CH₂ from side chain), 1.58 (m, 2H, 117 OCH₂CH₂(CH₂)₁₀CH₃), 2.69 (dd, 1H, J_{2a,2b}=18.9, J_{2a,3}=2.9 Hz, H-2a), 2.74 (dd, 1H, 118 J_{2a,2b}=18.9, J_{2b,3}=4.7 Hz, H-2b), 3.37-3.53 (m, 2H, OCH₂(CH₂)₁₁CH₃), 3.65 (d, 2H, J_{6,7}=5.5 119 120 Hz, H-7), 4.21 (d, 1H, J_{5,6}=4.0 Hz, H-5), 4.26 (td, 1H, J_{5,6}=4.1, J_{6,7}=5.5 Hz, H-6), 4.61 and 4.70 (2×d, 2H, J_{gem}=11.9 Hz, CH₂Ph), 4.93 (d, 1H, J_{3,4}=4.7 Hz, H-4), 4.97 (ddd, 1H, J_{3,4}=4.7, 121 $J_{2a,3}=2.9, J_{2b,3}=4.6$ Hz, H-3), 7.30–7.41 (m, 5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ 14.13 122 (CH₃), 22.70, 26.13, 29.37, 29.41, 29.49, 29.56, 29.62, 29.63, 29.66, 29.68, 31.93 (11×CH₂) 123 from side chain), 36.03 (C-2), 68.57 (C-7), 71.87 (OCH₂(CH₂)₁₁CH₃), 72.76 (CH₂Ph), 76.72 124 (C-3), 79.65 (C-6), 81.51 (C-5), 85.53 (C-4), 127.75, 128.17, 128.60, 137.17 (Ph), 175.34 125 (C=O). HRMS-Heated ESI-Orbitrap: m/z 469.29308 (M⁺+Na); calcd. for C₂₇H₄₂NaO₅: 126 469.29299; *m/z* 485.26669 (M⁺+K), calcd. for C₂₇H₄₂KO₅: 485.26693. 127

3,6-Anhydro-2-deoxy-L-ido-heptono-1,4-lactone (2). White crystals, mp 73-75 °C (EtOAc/ 128 pentane), lit.¹ mp 72–74 °C (EtOAc/pentane); $[\alpha]_{D} = -25.0$ (c 0.44, H₂O), lit.¹ $[\alpha]_{D}^{20} = -32.0$ 129 (c 0.6, H₂O); $R_f = 0.16$ (3:2 EtOAc/CH₂Cl₂). IR (CHCl₃): v_{max} 3378 (OH), 1780 (C=O). ¹H 130 NMR (400 MHz, acetone-*d*₆): δ 2.46 (d, 1H, *J*_{2a,2b}=18.4 Hz, H-2a), 2.85 (dd, 1H, *J*_{2a,2b}=18.4, 131 J_{2b,3}=6.2 Hz, H-2b), 2.89 (br. s, 2H, 2×OH), 3.77 (dd, 1H, J_{6,7a}=5.5, J_{7a,7b}=11.0 Hz, H-7a), 132 3.83 (dd, 1H, J_{6,7b}=5.3 Hz, J_{7a,7b}=11.0 Hz, H-7b), 4.00 (td, 1H, J_{5,6}=3.5, J_{6,7}=5.0 Hz, H-6), 133 134 4.41 (t, 1H, J_{5.6}=4.0 Hz, H-5), 4.88 (d, 1H, J_{3.4}=4.3 Hz, H-4), 4.95 (dd, 1H, J_{3.4}=4.4, J_{2b.3}=6.1 Hz, H-3); ¹³C NMR (100 MHz, acetone- d_6): δ 36.55 (C-2), 60.96 (C-7), 75.24 (C-5), 77.57 135 (C-3), 82.21 (C-6), 89.14 (C-4), 176.13 (C=O). HRMS (ESI⁺): m/z 175.06038 (M⁺+H), 136 calculated for C₇H₁₁O₅: 175.06010. 137

3,6-Anhydro-7-O-hexyl-2-deoxy-L-ido-heptono-1,4-lactone (3). White crystals, mp 47-49 138 °C (CH₂Cl₂/hexane); $[\alpha]_D = -26.3$ (c 0.3, CHCl₃); $R_f = 0.15$ (7:3 Et₂O/light petroleum). IR 139 (KBr): *v*_{max} 3290 (OH), 1775 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3H, *J*=6.8 Hz, 140 CH₃), 1.22–1.38 (m, 6H, 3×CH₂ from side chain), 1.59 (m, 2H, OCH₂CH₂(CH₂)₃CH₃), 2.67 141 (d, 1H, J_{2a,2b}=18.7 Hz, H-2a), 2.75 (dd, 1H, J_{2a,2b}=18.7, J_{2b,3}=5.7 Hz, H-2b), 3.52 (m, 2H, 142 OCH₂(CH₂)₄CH₃), 3.88 (dd, 1H, J_{6,7a}=3.0, J_{7a,7b}=11.2 Hz, H-7a), 3.91 (dd, 1H, J_{6,7b}=3.4, 143 J_{7a,7b}=11.2 Hz, H-7b), 4.12 (m, 1H, H-6), 4.23 (d, 1H, J_{5,OH}=3.6 Hz, OH), 4.54 (t, 1H, H-5), 144 4.87 (d, 1H, *J*_{3,4}=4.2 Hz, H-4), 5.01 (t, 1H, *J*_{3,4}=4.7 Hz, H-3). ¹³C NMR (100 MHz, CDCl₃): δ 145 14.00 (CH₃), 22.53, 25.63, 29.37, 31.53 (4×CH₂ from side chain), 36.10 (C-2), 69.58 (C-7), 146 72.66 (OCH₂(CH₂)₄CH₃), 76.16 (C-5), 76.91 (C-3), 78.59 (C-6), 88.27 (C-4), 175.40 (C=O). 147 HRMS-Heated ESI-Orbitrap: *m/z* 281.13567 (M⁺+Na), calcd. for C₁₃H₂₂NaO₅: 281.13649. 148

3,6-Anhydro-7-*O***-heptyl-2-deoxy-L***-ido***-heptono-1,4-lactone** (**4**). White crystals, mp 41–42 °C (CH₂Cl₂/hexane); $[\alpha]_D = -33.2$ (*c* 0.5, CHCl₃); $R_f = 0.15$ (7:3 Et₂O/light petroleum). IR (KBr): v_{max} 3434 (OH), 1784 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, 3H, *J*=6.9 Hz, CH₃), 1.20–1.36 (m, 8H, 4×CH₂ from side chain), 1.59 (m, 2H, OCH₂CH₂(CH₂)₄CH₃), 2.67

¹ K. Bock, I. Lundt, C. Pedersen, *Carbohydr. Res.* **179** (1988) 87.

(d, 1H, J_{2a,2b}=18.7 Hz, H-2a), 2.75 (dd, 1H, J_{2a,2b}=18.7, J_{2b,3}=5.7 Hz, H-2b), 3.52 (m, 2H, 153 OCH₂(CH₂)₅CH₃), 3.88 (dd, 1H, J_{6.7a}=3.1, J_{7a.7b}=11.1 Hz, H-7a), 3.91 (dd, 1H, J_{6.7b}=3.4, 154 J_{7a,7b}=11.1 Hz, H-7b), 4.12 (m, 1H, H-6), 4.23 (d, 1H, J_{5.0H}=3.7 Hz, OH), 4.54 (t, 1H, 155 J_{5,6}=3.1 Hz, H-5), 4.87 (d, 1H, J_{3,4}=4.2 Hz, H-4), 5.01 (m, 1H, H-3). ¹³C NMR (100 MHz, 156 CDCl₃): δ 14.06 (CH₃), 22.58, 25.93, 29.02, 29.42, 31.71 (5×CH₂ from side chain), 36.10 (C-157 2), 69.59 (C-7), 72.66 (OCH₂(CH₂)₅CH₃), 76.17 (C-5), 76.91 (C-3), 78.59 (C-6), 88.27 (C-4), 158 175.39 (C=O). HRMS-Heated ESI-Orbitrap: m/z 295.15146 (M⁺+Na), calcd. for 159 C₁₄H₂₄NaO₅: 295.15214. 160

3,6-Anhydro-7-O-octyl-2-deoxy-L-ido-heptono-1,4-lactone (5). White crystals, mp 51-53 161 °C (CH₂Cl₂/hexane); $[\alpha]_D$ –26.2 (c 0.5, CHCl₃); $R_f = 0.19$ (4:1 Et₂O/light petroleum). IR 162 (KBr): *v*_{max} 3430 (OH), 1777 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, 3H, *J*=6.9 Hz, 163 CH₃), 1.20–1.37 (m, 10H, 5×CH₂ from side chain), 1.60 (m, 2H, OCH₂CH₂(CH₂)₅CH₃), 2.68 164 (d, 1H, J_{2a,2b}=18.6 Hz, H-2a), 2.76 (dd, 1H, J_{2a,2b}=18.6, J_{2b,3}=5.7 Hz, H-2b), 3.52 (m, 2H, 165 OCH₂(CH₂)₆CH₃), 3.88 (dd, 1H, J_{6,7a}=3.0, J_{7a,7b}=11.1 Hz, H-7a), 3.90 (dd, 1H, J_{6,7b}=3.4, 166 J_{7a,7b}=11.1 Hz, H-7b), 4.12 (m, 1H, H-6), 4.25 (br. s, 1H, OH), 4.55 (d, 1H, J_{5,6}=3.2 Hz, H-5), 167 4.88 (d, 1H, J_{3,4}=4.2 Hz, H-4), 5.01 (m, 1H, H-3). ¹³C NMR (100 MHz, CDCl₃): δ 14.05 168 (CH₃), 22.60, 25.94, 29.14, 29.28, 29.38, 31.75 (6×CH₂ from side chain), 36.07 (C-2), 69.56 169 (C-7), 72.65 (OCH₂(CH₂)₆CH₃), 76.15 (C-5), 76.88 (C-3), 78.54 (C-6), 88.23 (C-4), 175.34 170 (C=O). HRMS-Heated ESI-Orbitrap: m/z 309.16760 (M⁺+Na), calcd. for C₁₅H₂₆NaO₅: 171 309.16779. 172

173**3,6-Anhydro-7-***O***-nonyl-2-deoxy-L***-ido***-heptono-1,4-lactone** (6). Colourless crystals, mp 53174°C (CH₂Cl₂/hexane), $[\alpha]_D = -35.0$ (*c* 0.5, CHCl₃), $R_f=0.32$ (Et₂O). IR (film): v_{max} 3277 (OH),1751774 (C=O). For ¹H and ¹³C NMR spectra see, ref. 2. HRMS: m/z 301.2000 (M⁺+H), calcd.176for C₁₆H₂₉O₅: 301.2010; m/z 318.2266 (M⁺+NH₄), calcd. for C₁₆H₃₂NO₅: 318.2275.

177 **3,6-Anhydro-7-***O***-decyl-2-deoxy-L***ido***-heptono-1,4-lactone** (7). White crystals, mp 59–60 178 °C (CH₂Cl₂/hexane), $[\alpha]_D = -29.1$ (*c* 1.0, CHCl₃), $R_f=0.25$ (9:1 CH₂Cl₂/EtOAc). IR (film): 179 v_{max} 3481 (OH), 1773 (C=O). For NMR (¹H and ¹³C) and LRMS spectra see, ref. 2. Anal. 180 Found: C, 65.12; H, 9.56. Calculated for C₂₄H₃₆O₅: C, 64.94; H, 9.62.

181 3,6-Anhydro-7-O-undecyl-2-deoxy-L-ido-heptono-1,4-lactone (8). White crystals, mp 57 °C (CH₂Cl₂/hexane); $[\alpha]_D$ –26.6 (c 0.5, CHCl₃); $R_f = 0.15$ (7:3 Et₂O/light petroleum). IR 182 (KBr): v_{max} 3444 (OH), 1775 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, 3H, J=7.1 Hz, 183 CH₃), 1.21–1.34 (m, 16H, 8×CH₂ from side chain), 1.59 (m, 2H, OCH₂CH₂(CH₂)₈CH₃), 2.67 184 (d, 1H, J_{2a,2b}=18.7 Hz, H-2a), 2.75 (dd, 1H, J_{2a,2b}=18.7, J_{2b,3}=5.7 Hz, H-2b), 3.52 (m, 2H, 185 OCH₂(CH₂)₉CH₃), 3.87 (dd, 1H, J_{6,7a}=3.1, J_{7a,7b}=11.1 Hz, H-7a), 3.90 (dd, 1H, J_{6,7b}=3.4, 186 J_{7a,7b}=11.1 Hz, H-7b), 4.11 (m, 1H, H-6), 4.53 (d, 1H, J_{5,6}=3.3 Hz, H-5), 4.87 (d, 1H, J_{3,4}=4.3 187 Hz, H-4), 5.03 (m, 1H, H-3). ¹³C NMR (100 MHz, CDCl₃): δ 14.07 (CH₃), 22.63, 25.92, 188 29.27, 29.32, 29.37, 29.47, 29.53, 29.54, 31.85, (9×CH₂ from side chain), 36.05 (C-2), 69.52 189 (C-7), 72.61 (OCH₂(CH₂)₉CH₃), 76.09 (C-5), 76.86 (C-3), 78.56 (C-6), 88.23 (C-4), 175.37 190 (C=O). HRMS-Heated ESI-Orbitrap: m/z 351.21415 (M⁺+Na), calcd. for C₁₈H₃₂NaO₅: 191 351.21474. 192

² V. Popsavin, B. Srećo, G. Benedeković, M. Popsavin, J. Francuz, V. Kojić, G. Bogdanović, *Bioorg. Med. Chem. Lett.* **18** (2008) 5182.

3,6-Anhydro-7-O-dodecyl-2-deoxy-L-ido-heptono-1,4-lactone (9). White needles, mp 69-193 70 °C (CH₂Cl₂/hexane); $[\alpha]_D = -25.0$ (c 0.5, CHCl₃); $R_f = 0.15$ (3:2 Et₂O/light petroleum). IR 194 (KBr): v_{max} 3447 (OH), 1775 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, 3H, J=6.8 Hz, 195 CH₃), 1.20–1.36 (m, 18H, 9×CH₂ from side chain), 1.59 (m, 2H, OCH₂CH₂(CH₂)₉CH₃), 2.66 196 197 (d, 1H, J_{2a,2b}=18.6 Hz, H-2a), 2.75 (dd, 1H, J_{2a,2b}=18.6, J_{2b,3}=5.7 Hz, H-2b), 3.52 (m, 2H, 198 OCH₂(CH₂)₁₀CH₃), 3.86 (dd, 1H, J_{6.7a}=3.1, J_{7a,7b}=11.0 Hz, H-7a), 3.91 (dd, 1H, J_{6.7b}=3.4, 199 J_{7a,7b}=11.1 Hz, H-7b), 4.11 (m, 1H, H-6), 4.22 (d, 1H, J_{5,OH}=3.7 Hz, OH), 4.53 (t, 1H, $J_{5,6}=3.3$ Hz, H-5), 4.86 (d, 1H, $J_{3,4}=4.1$ Hz, H-4), 5.01 (m, 1H, H-3). ¹³C NMR (100 MHz, 200 CDCl₃): δ 14.08 (CH₃), 22.64, 25.93, 29.30, 29.33, 29.38, 29.48, 29.54, 29.58, 29.60, 31.87 201 (10×CH₂ from side chain), 36.06 (C-2), 69.54 (C-7), 72.62 (OCH₂(CH₂)₁₀CH₃), 76.11 (C-5), 202 76.86 (C-3), 78.56 (C-6), 88.23 (C-4), 175.35 (C=O). HRMS-Heated ESI-Orbitrap: m/z 203 365.23022 (M⁺+Na), calcd. for C₁₉H₃₄NaO₅: 365.23039. 204

3,6-Anhydro-7-O-tridecyl-2-deoxy-L-ido-heptono-1,4-lactone (10). White needles, mp 63-205 65 °C (CH₂Cl₂/hexane); $[\alpha]_D = -19.3$ (c 0.5, CHCl₃); $R_f = 0.17$ (7:3 Et₂O/light petroleum). IR 206 (KBr): *v*_{max} 3450 (OH), 1785 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3H, *J*=6.8 Hz, 207 208 CH₃), 1.21–1.34 (m, 20H, 10×CH₂ from side chain), 1.59 (m, 2H, OCH₂CH₂(CH₂)₁₀CH₃), 2.68 (d, 1H, J_{2a,2b}=18.6 Hz, H-2a), 2.76 (dd, 1H, J_{2a,2b}=18.6, J_{2b,3}=5.6 Hz, H-2b), 3.52 (m, 2H, 209 OCH₂(CH₂)₁₁CH₃), 3.88 (dd, 1H, J_{6.7a}=3.0, J_{7a,7b}=11.1 Hz, H-7a), 3.92 (dd, 1H, J_{6.7b}=3.4, 210 J_{7a,7b}=11.1 Hz, H-7b), 4.12 (m, 1H, H-6), 4.24 (d, 1H, J_{5,OH}=3.7 Hz, OH), 4.55 (t, 1H, 211 $J_{5,6}=3.0$ Hz, H-5), 4.88 (d, 1H, $J_{3,4}=4.1$ Hz, H-4), 5.04 (m, 1H, H-3). ¹³C NMR (100 MHz, 212 CDCl₃): δ 14.12 (CH₃), 22.70, 25.97, 29.36, 29.37, 29.42, 29.53, 29.59, 29.65, 29.67, 29.71, 213 31.92 (11×CH₂ from side chain), 36.11 (C-2), 69.61 (C-7), 72.69 (OCH₂(CH₂)₁₁CH₃), 76.21 214 (C-5), 76.92 (C-3), 78.57 (C-6), 88.27 (C-4), 175.37 (C=O). HRMS-Heated ESI-Orbitrap: 215

216 m/z 379.24528 (M⁺+Na), calcd. for C₂₀H₃₆NaO₅: 379.24604.

Compounda	IC ₅₀ (µM) ^a , 72 h							
Compounds	K562	HL-60	Jurkat	Raji	MCF-7	MDA-MB 231	HeLa	A549
1	2.96	224.61	2.49	23.42	51.27	598.66	785.31	2.36
2	2.69	9.97	9.51	7.40	9.64	0.24	5.22	31.45
3	0.70	4.91	8.87	1.11	12.34	15.62	3.54	2.43
4	1.02	1.10	11.53	5.98	2.38	9.76	0.56	4.43
5	0.74	0.68	19.78	4.25	0.34	28.70	3.41	4.19
6	8.61 ^b	1.53 ^b	6.64 ^b	7.25	102.36	296.78	9.59 ^b	0.92
7	1.25 ^b	0.14 ^b	103.27 ^b	76.36	89.36	112.36	0.30 ^b	29.05
8	0.18	1.83	16.26	2.79	2.28	26.57	4.11	7.72
9	3.46	8.25	8.02	3.52	5.31	7.63	2.25	3.96
10	4.87	3.96	4.29	4.88	15.36	36.47	10.32	0.025

TABLE S-1. Cytotoxicity data for SAR analysis.

 a IC₅₀ is the concentration of compound required to inhibit the cell growth by 50% compared to an untreated control. Values are means of three independent experiments. Coefficients of variation were less than 10%.

352 ^b Taken from reference 22.

The structure-activity relationships were accessed as follows: the IC₅₀ values of two compounds were compared, and the $\Delta \log IC_{50}$ was calculated ($\Delta \log IC_{50}$ is a difference between the log IC₅₀ values of an analogue and the corresponding control compound). Positive $\Delta \log IC_{50}$ values show a decrease of antiproliferative activity, whereas negative values indicate an increase in the activity upon the structural modification being considered. The results are presented in Figure S-35.

Fig. S-35. SAR Analysis. Influence of: (A) replacement of the hydroxybenzyl group in **1** with an alkoxymethyl chain; (B) introduction of an alkyl chain at the 7-OH position in molecule **2**; (C) increasing the number of carbon atoms in the side chain of analogues **3–10**.