1	SUPPLEMENTARY MATERIAL TO
2	
3 4 5	(E)-4-(((2-amino-5-chlorophenyl)imino)methyl)-5-(hydroxymethyl)-2- methylpyridin-3-ol and its Cu(II) complex: Synthesis, DFT calculations and AIM analysis
6	
7 8 9	MORTEZA YAVARI, S. ALI BEYRAMABADI [*] , ALI MORSALI, MOHAMMAD REZA BOZORGMEHR
10 11	Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
12	* Corresponding author (Beyramabadi):
13	E-mail addresses: beiramabadi@yahoo.com, beiramabadi6285@mshdiau.ac.ir
14	
15	
16	
17	Page S2: Figure S1. The B3LYP optimized geometry of the TSEnol-Keto of the meta isomer.
18	Page S2: Figure S2. Optimized geometry and the isosurface Fukui map of the L ⁻ .
19	Page S3: Figure S3. The ¹ H- and ¹³ C-NMR spectra of the HL Schiff base.
20	Page S4: Figure S4. The QTAIM molecular graphs of the HL Schiff base and [Cu(L)Cl] complex.
21	Page S5: Table S1. The elemental analysis of the investigated compounds.
22 23	Page S5: Table S2. Relative electronic energies (E+ZPE) for the investigated species of the HL Schiff base (in term of kJ.mol ⁻¹).
24	Page S6: Table S3. Important experimental and the DFT-computed IR vibrational frequencies (cm ⁻¹) of the
25	HL Schiff base and [Cu(L)Cl] complex.
26	Page S7: Table S4. Important topological parameters of the investigated species (energies in term of kJ.mol
27	¹).
28	

S1

- Figure S2. Optimized geometry and the isosurface Fukui map of the L⁻.

Figure S3. The ¹H- and ¹³C-NMR spectra of the HL Schiff base.

Table S1. The elemental analysis of the investigated compounds.

-		Calculated (%)			Experimental (%)						
	Species	С	Н	Ν	Metal	С	Н	Ν	Metal	Chemical formula	
-	HL	57.64	4.84	14.40	-	57.34	4.76	15.01	-	$C_{14}H_{14}ClN_3O_2$	
-	[Cu(L)Cl]	43.15	3.36	10.78	16.31	43.52	3.48	10.46	17.02	$C_{14}H_{13}Cl_2CuN_3O_2$	
49											

Table S2. Relative electronic energies (E+ZPE) for the investigated species of the HL Schiff base (in term
of kJ.mol⁻¹).

	E+2	٨G		
Species	Methanol solution	Gas phase	(Methanol solution)	
Enol tautomer of the meta isomer	0	0	0	
Keto tautomer of the meta isomer	27.38	29.15	24.59	
Enol tautomer of the para isomer	24.23	26.34	20.94	
Keto tautomer of the para isomer	30.89	33.67	28.63	
TSEnol-Keto	164.90	159.11	123.91	

- -

Experimental frequencies			Calculated	frequencies		
•	[Cu(L)Cl]	HL		[Cu(L)Cl]		Vibrational assignment
HL		Frequenc y	Intensity (km.mol ⁻	Frequency	Intensity (km.mol ⁻ ¹)	
-	547 (m)	-	-	532	41	vasym(Cu-N, Cu-O)
-	640 (w)	-	-	618	5	v _{sym} (Cu-N, Cu-O)
765 (m)	767 (m)	759	16	744	9	Breathing of the aromatic rings
846 (w)	851 (w)	834	24	836	14	$\delta_{op}(aromatic hydrogens)$
809 (m)	-	802	79	-	-	δ _{op} (H12)
912 (w)	915 (w)	886	51	892	23	υ(C13-Cl1)
1032 (vs)	1027 (s)	1039	73	1037	95	υ(C1-O1)
1208 (m)	1188 (m)	1173	126	1160	94	v(C9-N2)
1298 (m)	1262 (m)	1284	105	1249	228	υ(C9-N2)+ υ(Ar-C)
1380 (vs)	1416 (vs)	1370	112	1421	137	v(C1-O1)
1471 (m)		1456	68	1482	186	υ(C9-N2)
1521 (m)	1507 (m)	1535	16	1496	127	$v_{asym}(C=C)$ of the benzene ring
1521 (11)		1557	32	1540	24	$\upsilon_{sym}(C=C)$ of the benzene ring
		1570	98	1563	108	v(C=N, C=C) of the right pyridine rings $+ v(C4-N2)$
	1605 (vs)	1584	125	1567	58	υ(C=N, C=C) of the pyridine rings
1617 (vs)		1592	221	1581	279	υ(C4=N2)
2746 (m)	2741 (s)	2852	40	2852	65	v _{sym} (C-H) of -CH ₂ - groups
2840 (s)	2838 (s)	2876	30	2876	36	vasym(C-H) of -CH2- groups
2919 (s)	2918 (s)	2914	20	2930	14	$v_{sym}(C-H)$ of the methyl groups
		2954	36	3032	15	υ(C4-H1)
	2006 (3015	11	3034	14	v_{asym} (C-H) of the methyl groups
3110 (vs, br)	3096 (Vs, br)	3087- 3056	3	3289- 3073	4	$\upsilon_{asym}(C-H)$ of the aromatic hydrogens
		3126	471	-	-	υ(O1-H12)
	3362 (s)	3443	28	3353	45	v _{sym} (H-N-H) of the -NH ₂ amine group
3463 (m,		3547	39	3417	48	vasym(H-N-H) of the -NH2 amine group
	3444 (s)	3260	59	3703	55	υ(O2-H5)

Table S3. Important experimental and the DFT-computed IR vibrational frequencies (cm⁻¹) of the HL

61 Schiff base (Enol tautomer of the *meta* isomer) and [Cu(L)Cl] complex.

Bond	ρ(r)	$\nabla^2 \rho$	V _b	G _b	H _b	$-G_b/V_b$				
HL Schiff base										
C1-O1	0.299251	-0.38595	-2027.82	887.36	-1140.45	0.44				
O1-H12	0.331725	-2.29726	-1873.5	183.54	-1689.97	0.10				
N2H12	0.049647	0.1126	-120.763	97.30	-23.48	0.81				
C4-N2	0.365541	-0.84807	-2401.46	922.68	-1478.80	0.38				
C9-N2	0.292365	-0.82668	-1365.14	411.53	-953.62	0.30				
C10-N3	0.305063	-0.89704	-1471.92	441.84	-1030.08	0.30				
C7-O2	0.254508	-0.48479	-1429.14	555.62	-873.54	0.39				
O2-H5	0.366696	-2.55259	-2048.69	187.41	-1861.28	0.09				
O2H2	0.015167	0.075335	-31.9744	40.69	8.72	1.27				
C13-Cl1	0.189252	-0.26191	-504.796	166.52	-338.26	0.33				
[Cu(L)Cl] compl	[Cu(L)Cl] complex									
C1-O1	0.344981	-0.17071	-2851.17	1369.62	-1481.55	0.48				
C4-N2	0.348704	-0.70745	-2619.77	1077.93	-1541.85	0.41				
C9-N2	0.294602	-0.93463	-1471.63	429.38	-1042.28	0.29				
C10-N3	0.276305	-0.83136	-1209.91	332.37	-877.52	0.27				
C7-O2	0.258655	-0.54536	-1562.55	602.46	-960.07	0.39				
O2-H5	0.350059	-1.811	-1535.56	173.99	-1361.55	0.11				
C13-Cl1	0.187947	-0.24896	-487.747	162.25	-325.51	0.33				
Cu-O1	0.075907	0.521302	-315.888	328.86	12.98	1.04				
Cu-N2	0.166307	0.872714	-1020.69	796.48	-224.21	0.78				
Cu-N3	0.07758	0.441895	-304.898	297.34	-7.58	0.98				
Cu-Cl2	0.063669	0.272222	-201.315	189.91	-11.41	0.94				
O2H2	0.015259	0.071397	-31.9744	39.39	7.43	1.23				

Table S4. Important topological parameters of the investigated species (energies in term of kJ.mol⁻¹).