Activated carbon from mustard stalk biomass: Synthesis, characterization and application in wastewater treatment Scientific paper

Main Article Content

Kalpana Patidar
https://orcid.org/0000-0002-8755-1475
Manish Vashishtha
https://orcid.org/0000-0002-8397-0699

Abstract

Present work is focused on the preparation of mustard stalk activated carbon (MSAC) using chemical activation with H3PO4 and exploring its pro­perties for its use in dye removal from wastewater. Adsorption variable (dos­age, contact time, and solution pH), pore structure, morphology, surface func­tional groups, equilibrium kinetics and isotherm study for the removal of meth­ylene blue (MB) using MSAC were investigated. The present study showed that an adsorption dosage of 0.2 g L-1 and pH 8 can be considered as optimum for the MB removal. SEM result showed that pore of MSAC was larger than the pore of the mustard stalk (MS). BET surface area and total pore volume of MSAC were found as 510 m2 g-1 and 0.33 cm3 g-1, respectively. Equilibrium adsorption data were examined by Langmuir and Freundlich isotherm models. Better correspondence to the Langmuir model with a maximum adsorption capacity of 212.76 mg g-1 (MB onto MSAC) was obtained. Dimensionless factor, RL revealed favourable nature of the sorption in the MSAC–MB sys­tem. Adsorption rates were found to follow the pseudo-second-order kinetics with good correlation. These results show that the MSAC could be used as a renew­able and economical alternative to commercial activated carbon in the removal of MB dye from wastewater.

Article Details

How to Cite
[1]
K. Patidar and M. Vashishtha, “Activated carbon from mustard stalk biomass: Synthesis, characterization and application in wastewater treatment: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 4, pp. 429-444, Apr. 2021.
Section
Chemical Engineering

References

I. Bazin, A. Ibn Hadj Hassine, Y. Haj Hamouda, W. Mnif, A. Bartegi, M. Lopez-Ferber, M. De Waard, C. Gonzalez, Ecotoxicol. Environ. Saf. 85 (2012) 131 (http://dx.doi.org/10.1016/j.ecoenv.2012.08.003)

L. Liu, D. He, F. Pan, R. Huang, H. Lin, X. Zhang, Chemosphere 238 (2020) (http://dx.doi.org/10.1016/j.chemosphere.2019.124671)

A. H. Jawad, M. Bardhan, A. Islam, A. Islam, S. S. A. Syed-Hassan, S. N. Surip, Surfaces Interfaces (2020) 100688 (http://dx.doi.org/10.1016/j.surfin.2020.100688)

V. Katheresan, J. Kansedo, S. Y. Lau, J. Environ. Chem. Eng. 6 (2018) 4676 (http://dx.doi.org/10.1016/j.jece.2018.06.060)

M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard. Mater. 177 (2010) 70 (http://dx.doi.org/10.1016/j.jhazmat.2009.12.047)

B. Hu, Y. Ai, J. Jin, T. Hayat, A. Alsaedi, L. Zhuang, X. Wang, Biochar 2 (2020) 47 (http://dx.doi.org/10.1007/s42773-020-00044-4)

W. Xing, X., Jiang, W., Li, S., Zhang, X. and Wang, Waste Manage. 89 (2019) 64 (http://dx.doi.org/https://doi.org/10.1016/j.wasman.2019.04.002)

A. Kumar, H. Gupta, Environ. Technol. Innov. 20 (2020) (http://dx.doi.org/10.1016/j.eti.2020.101080)

S. Charola, H. Patel, S. Chandna, S. Maiti, J. Clean. Prod. 223 (2019) 969 (http://dx.doi.org/10.1016/j.jclepro.2019.03.169)

R. K. Gautam, A. Mudhoo, M. C. Chattopadhyaya, J. Environ. Chem. Eng. 1 (2013) 1283–1291 (http://dx.doi.org/10.1016/j.jece.2013.09.021)

D. Garg, C. B. Majumder, S. Kumar, B. Sarkar, J. Environ. Chem. Eng. 7 (2019) (http://dx.doi.org/10.1016/j.jece.2019.103365)

S. Archin, S. H. Sharifi, G. Asadpour, J. Clean. Prod. 239 (2019) (http://dx.doi.org/10.1016/j.jclepro.2019.118136)

Y. Gao, Q. Yue, B. Gao, A. Li, Sci. Total Environ. 746 (2020) 141094 (http://dx.doi.org/10.1016/j.scitotenv.2020.141094)

M. J. P. Brito, C. M. Veloso, L. S. Santos, R. C. F. Bonomo, R. da C. I. Fontan, Powder Technol. 339 (2018) 334 (http://dx.doi.org/10.1016/j.powtec.2018.08.017)

R. T. Zrybko, C.L., Fukuda, E.K. and Rosen, J. Chromatogr. A 767 (1997) 43–52 (http://dx.doi.org/https://doi.org/10.1016/S0021-9673(96)01068-0)

Statista, https://www.statista.com/statistics/263930/worldwide-production-of-rapeseed-by- country (visited October 25, 2020)

T. C. Purohit, P., Tripathi, A.K. and Kandpal, Energy 31 (2006) 1321 (http://dx.doi.org/10.1016/j.energy.2005.06.004)

K. Patidar, M. Vashishtha, Water Air Soil Pollut 231 (2020) 526 (https://doi.org/10.1007/s11270-020-04893-4)

S. Maiti, S. Purakayastha, B. Ghosh, Fuel 86 (2007) 1513 (http://dx.doi.org/10.1016/j.fuel.2006.11.016)

D. Vamvuka, E. Kakaras, E. Kastanaki, P. Grammelis, Fuel 82 (2003) 1949 (http://dx.doi.org/10.1016/S0016-2361(03)00153-4)

A. Kumar, H. M. Jena, Results Phys. 6 (2016) 651 (http://dx.doi.org/10.1016/j.rinp.2016.09.012)

S. J. C. E. J. Prahas, D. Kartika, Y. Indraswati, N. Ismadji, Chem. Eng. J. 140 (2008) 32 (http://dx.doi.org/https://doi.org/10.1016/j.cej.2007.08.032)

Y. Sun, H. Li, G. Li, B. Gao, Q. Yue, X. Li, Bioresour. Technol. 217 (2016) 239 (http://dx.doi.org/10.1016/j.biortech.2016.03.047)

M. T. Uddin, M. A. Islam, S. Mahmud, M. Rukanuzzaman, J. Hazard. Mater. 164 (2009) 53 (http://dx.doi.org/10.1016/j.jhazmat.2008.07.131)

S. Senthilkumaar, P. R. Varadarajan, K. Porkodi, C. V. Subbhuraam, J. Colloid Interface Sci. 284 (2005) 78 (http://dx.doi.org/10.1016/j.jcis.2004.09.027)

K. Aisan, H. Z. Mousavi, R. Alimorad, H. Shirkhanloo, J. Serbian Chem. Soc. 83 (2018) 651 (http://dx.doi.org/10.2298/JSC170827112K)

L. Liu, X. He, C. Yu, X. Bai, Y. Ye, L. Wang, B. Zhang, Powder Technol. 326 (2018) 181 (http://dx.doi.org/https://doi.org/10.1016/j.powtec.2017.12.034)

K. C. Bedin, A. C. Martins, A. L. Cazetta, O. Pezoti, V. C. Almeida, Chem. Eng. J. 286 (2016) 476 (http://dx.doi.org/10.1016/j.cej.2015.10.099)

Y. Tang, Y. Zhao, T. Lin, Y. Li, R. Zhou, Y. Peng, J. Environ. Chem. Eng. 7 (2019) (http://dx.doi.org/10.1016/j.jece.2019.103398)

S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, J. Environ. Chem. Eng. 5 (2017) 601 (http://dx.doi.org/10.1016/j.jece.2016.12.019).