Assessment of density functional approximations for calculation of exchange coupling constants in thiocyanato and cyanato double bridged binuclear Ni(II) complexes

Matija Zlatar, Filip Vlahović, Dragana Mitić, Mario Zlatović, Maja Gruden

Abstract


In the present work, we examine the magnetic properties of 8 "end-to-end" thiocyanato, and 3 "end-to-end" cyanato double bridged Ni(II) binu­cle­ar complexes. Thiocyanato complexes are weakly ferromagnetic. Cyanato brid­ged complexes exhibit weak antiferromagnetic coupling. There­fore, it is a chal­lenge for computational chemistry to calculate the exchange coupling constant in these systems accurately. 17 different Density Functional Approximations with different flavors are used to find the method of choice to study magnetic properties in binuclear Ni(II) complexes within the Broken-Symmetry approach. It is found that M06-2X and PWPB95 performed the best compared to experimental values for the entire set of examined complexes. Furthermore, the magneto-structural correlation rationalizes the results.


Keywords


BS-DFT; ferromagnetic coupling; antiferromagnetic coupling; magneto-structural correlations; double-hybrid functionals

Full Text:

PDF (888 kB)

References


G. Li, D. Zhu, X. Wang, Z. Su, M. R. Bryce, Chem. Soc. Rev. 49 (2020) 765–838 (https://doi.org/10.1039/c8cs00660a)

D. M. Zink, M. Bächle, T. Baumann, M. Nieger, M. Kühn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, S. Bräse, Inorg. Chem. 52 (2013) 2292–2305 (https://doi.org/10.1021/ic300979c)

J. He, M. Zeng, H. Cheng, Z. Chen, F. Liang, Zeitschrift Für Anorg. Und Allg. Chemie 639 (2013) 1834–1839 (https://doi.org/10.1002/zaac.201300153)

N. Xiong, G. Zhang, X. Sun, R. Zeng, Chinese J. Chem. 38 (2020) 185–201 (https://doi.org/10.1002/cjoc.201900371)

M. Jarenmark, H. Carlsson, E. Nordlander, Comptes Rendus Chim. 10 (2007) 433–462 (https://doi.org/10.1016/j.crci.2007.02.015)

D. Venegas-Yazigi, D. Aravena, E. Spodine, E. Ruiz, S. Alvarez, Coord. Chem. Rev. 254 (2010) 2086–2095 (https://doi.org/10.1016/j.ccr.2010.04.003)

P. Ghorai, P. Brandão, S. Benmansour, C. J. G. García, A. Saha, Polyhedron 188 (2020) 114708 (https://doi.org/10.1016/j.poly.2020.114708)

A. L. Gavrilova, C. J. Qin, R. D. Sommer, A. L. Rheingold, B. Bosnich, J. Am. Chem. Soc. 124 (2002) 1714–1722 (https://doi.org/10.1021/ja012386z)

C. Incarvito, A. L. Rheingold, C. J. Qin, A. L. Gavrilova, B. Bosnich, Inorg. Chem. 40 (2001) 1386–1390 (https://doi.org/10.1021/ic0012773)

K. Shanmuga Bharathi, S. Sreedaran, A. Kalilur Rahiman, V. Narayanan, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 105 (2013) 245–250 (https://doi.org/10.1016/j.saa.2012.12.031)

D. Ghosh, S. Mukhopadhyay, S. Samanta, K.-Y. Choi, A. Endo, M. Chaudhury, (2003) (https://doi.org/10.1021/ic034314)

J. Burmeister, Coord. Chem. Rev. 105 (1990) 77–133 (https://doi.org/10.1016/0010-8545(90)80019-P)

T. S. Mahapatra, S. Chaudhury, S. Dasgupta, V. Bertolasi, D. Ray, New J. Chem. 40 (2016) 2268–2279 (https://doi.org/10.1039/c5nj02410b)

P. Bhowmik, S. Chattopadhyay, M. G. B. Drew, C. Diaz, A. Ghosh, Polyhedron 29 (2010) 2637–2642 (https://doi.org/10.1016/j.poly.2010.06.014)

T. Mallah, M. L. Boillot, O. Kahn, J. Gouteron, S. Jeannin, Y. Jeannin, Inorg. Chem. 25 (1986) 3058–3065 (https://doi.org/10.1021/ic00237a027)

O. Kahn, T. Mallah, J. Gouteron, S. Jeannin, Y. Jeannin, J. Chem. Soc. Dalt. Trans. (1989) 1117–1126 (https://doi.org/10.1039/DT9890001117)

J. Carranza, J. Sletten, F. Lloret, M. Julve, J. Mol. Struct. 890 (2008) 31–40 (https://doi.org/10.1016/j.molstruc.2007.11.034)

A. E. Mauro, S. I. Klein, J. S. Saldaña, C. A. De Simone, J. Zukerman-Schpector, E. E. Castellano, Polyhedron 9 (1990) 2937–2939 (https://doi.org/10.1016/S0277-5387(00)84204-7)

S. Youngme, J. Phatchimkun, U. Suksangpanya, C. Pakawatchai, G. A. Van Albada, J. Reedijk, Inorg. Chem. Commun. 8 (2005) 882–885 (https://doi.org/10.1016/j.inoche.2005.06.024)

C. Diaz, J. Ribas, M. Salah El Fallah, X. Solans, M. Font-Bardía, Inorganica Chim. Acta 312 (2001) 1–6 (https://doi.org/10.1016/S0020-1693(00)00281-4)

T. Rojo, R. Cortés, L. Lezama, M. I. Arriortua, K. Urtiaga, G. Villeneuve, J. Chem. Soc. Dalt. Trans. (1991) 1779–1783 (https://doi.org/10.1039/DT9910001779)

D. M. Duggan, D. N. Hendrickson, Inorg. Chem. 13 (1974) 2056–2062 (https://doi.org/10.1021/ic50139a003)

D. M. Duggan, D. N. Hendrickson, Inorg. Chem. 13 (1974) 2929–2940 (https://doi.org/10.1021/ic50142a031)

W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim, FRG, 2001 (https://doi.org/10.1002/3527600043)

R. G. Parr, Density Functional Theory of Atoms and Molecules, in Horizons Quantum Chem., Springer Netherlands, 1980, pp. 5–15 (https://doi.org/10.1007/978-94-009-9027-2_2)

O. Kahn, Molecular magnetism, VCH Publishers, 1993.

L. Noodleman, J. Chem. Phys. 74 (1981) 5737–5743 (https://doi.org/10.1063/1.440939)

L. Noodleman, E. R. Davidson, Chem. Phys. 109 (1986) 131–143 (https://doi.org/10.1016/0301-0104(86)80192-6)

F. Neese, Coord. Chem. Rev. 253 (2009) 526–563 (https://doi.org/10.1016/j.ccr.2008.05.014)

A. Bencini, F. Totti, J. Chem. Theory Comput. 5 (2009) 144–154 (https://doi.org/10.1021/ct800361x)

G. David, N. Guihéry, N. Ferré, J. Chem. Theory Comput. 13 (2017) 6253–6265 (https://doi.org/10.1021/acs.jctc.7b00976)

S. Ninova, V. Lanzilotto, L. Malavolti, L. Rigamonti, B. Cortigiani, M. Mannini, F. Totti, R. Sessoli, J. Mater. Chem. C 2 (2014) 9599–9608 (https://doi.org/10.1039/c4tc01647e)

J. E. Peralta, J. I. Melo, J. Chem. Theory Comput. 6 (2010) 1894–1899 (https://doi.org/10.1021/ct100104v)

J. J. Phillips, J. E. Peralta, J. Chem. Phys. 138 (2013) 174115 (https://doi.org/10.1063/1.4802776)

N. A. G. Bandeira, B. Le Guennic, J. Phys. Chem. A 116 (2012) 3465–3473 (https://doi.org/10.1021/jp300618v)

T. Keškić, Z. Jagličić, A. Pevec, B. Čobeljić, D. Radanović, M. Gruden, I. Turel, K. Anđelković, I. Brčeski, M. Zlatar, Polyhedron 191 (2020) 114802 (https://doi.org/10.1016/j.poly.2020.114802)

S. Grimme, J. Chem. Phys. 124 (2006) 034108 (https://doi.org/10.1063/1.2148954)

L. Goerigk, S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (2014) 576–600 (https://doi.org/10.1002/wcms.1193)

D. A. Pantazis, Inorganics 7 (2019) 57 (https://doi.org/10.3390/inorganics7050057)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73–78 (https://doi.org/10.1002/wcms.81)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 (2018) e1327 (https://doi.org/10.1002/wcms.1327)

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297–3305 (https://doi.org/10.1039/b508541a)

D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 4 (2008) 908–919 (https://doi.org/10.1021/ct800047t)

C. van Wüllen, J. Chem. Phys. 109 (1998) 392–399 (https://doi.org/10.1063/1.476576)

D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 5 (2009) 2229–2238 (https://doi.org/10.1021/ct900090f)

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057–1065 (https://doi.org/10.1039/b515623h)

F. Neese, J. Chem. Phys. 115 (2001) 11080–11096 (https://doi.org/10.1063/1.1419058)

F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98–109 (https://doi.org/10.1016/j.chemphys.2008.10.036)

A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587–597 (https://doi.org/10.1007/s00214-007-0250-5)

A. D. Becke, Phys. Rev. A 38 (1988) 3098–3100 (https://doi.org/10.1103/PhysRevA.38.3098)

J. P. Perdew, Phys. Rev. B 33 (1986) 8822–8824 (https://doi.org/10.1103/PhysRevB.33.8822)

J. P. Perdew, Phys. Rev. B 34 (1986) 7406–7406 (https://doi.org/10.1103/PhysRevB.34.7406)

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785–789 (https://doi.org/10.1103/PhysRevB.37.785)

B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 98 (1993) 5612 (https://doi.org/10.1063/1.464906)

T. V. Russo, R. L. Martin, P. J. Hay, J. Chem. Phys. 101 (1994) 7729 (https://doi.org/10.1063/1.468265)

N. C. Handy, A. J. Cohen, Mol. Phys. 99 (2001) 403–412 (https://doi.org/10.1080/00268970010018431)

M. Swart, A. W. Ehlers, K. Lammertsma, Mol. Phys. 102 (2004) 2467–2474 (https://doi.org/10.1080/0026897042000275017)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215–241 (https://doi.org/10.1007/s00214-007-0310-x)

Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 (https://doi.org/10.1063/1.2370993)

V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 119 (2003) 12129 (https://doi.org/10.1063/1.1626543)

J. Tao, J. Perdew, V. Staroverov, G. Scuseria, Phys. Rev. Lett. 91 (2003) 146401 (https://doi.org/10.1103/PhysRevLett.91.146401)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648–5652 (https://doi.org/10.1063/1.464913)

M. Reiher, O. Salomon, B. Artur Hess, Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 107 (2001) 48–55 (https://doi.org/10.1007/s00214-001-0300-3)

L. Goerigk, S. Grimme, J. Chem. Theory Comput. 7 (2010) 291–309 (https://doi.org/10.1021/ct100466k)

H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 115 (2001) 3540–3544 (https://doi.org/10.1063/1.1383587)

Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, K. Hirao, J. Chem. Phys. 120 (2004) 8425–8433 (https://doi.org/10.1063/1.1688752)

T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 393 (2004) 51–57 (https://doi.org/10.1016/j.cplett.2004.06.011)

J. Da Chai, M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106 (https://doi.org/10.1063/1.2834918)

A. E. Shvelashvili, M. A. Porai-Koshits, A. S. Antsyshkina, J. Struct. Chem. 10 (1969) 552–555 (https://doi.org/10.1007/BF00743627)

H. D. Bian, W. Gu, Q. Yu, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng, Polyhedron 24 (2005) 2002–2008 (https://doi.org/10.1016/j.poly.2005.06.011)

T. Kumar Maji, G. Mostafa, J. M. Clemente-Juan, J. Ribas, F. Lloret, K. Okamoto, N. R. Chaudhuri, Eur. J. Inorg. Chem. 2003 (2003) 1005–1011 (https://doi.org/10.1002/ejic.200390123)

M. Monfort, J. Ribas, X. Solans, Inorg. Chem. 33 (1994) 4271–4276 (https://doi.org/10.1021/ic00097a013)

F. A. Mautner, M. Scherzer, C. Berger, R. C. Fischer, R. Vicente, S. S. Massoud, Polyhedron 85 (2015) 20–26 (https://doi.org/10.1016/j.poly.2014.08.031)

A. Escuer, R. Vicente, M. S. El Fallah, X. Solans, M. Font-Bardía, J. Chem. Soc. - Dalt. Trans. (1996) 1013–1019 (https://doi.org/10.1039/DT9960001013)

Z. Mahendrasinh, S. Ankita, S. B. Kumar, A. Escuer, E. Suresh, Inorganica Chim. Acta 375 (2011) 333–337 (https://doi.org/10.1016/j.ica.2011.05.027)

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456–1465 (https://doi.org/10.1002/jcc.21759)

T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett. 319 (2000) 223–230 (https://doi.org/10.1016/S0009-2614(00)00166-4)

A. P. Ginsberg, R. L. Martin, R. W. Brookes, R. C. Sherwood, A. P. Ginsberg, R. L. Martin, R. W. Brookes, R. C. Sherwood, Inorg. Chem. 11 (1972) 2884–2889 (https://doi.org/10.1021/ic50118a006)

C. Adhikary, S. Koner, Coord. Chem. Rev. 254 (2010) 2933–2958 (https://doi.org/10.1016/j.ccr.2010.06.001)

M. Swart, M. Gruden, Acc. Chem. Res. 49 (2016) 2690–2697 (https://doi.org/10.1021/acs.accounts.6b00271)

Y. Zhang, W. Yang, J. Chem. Phys. 109 (1998) 2604–2608 (https://doi.org/10.1063/1.476859)

M. Parthey, M. Kaupp, Chem. Soc. Rev. 43 (2014) 5067–5088 (https://doi.org/10.1039/C3CS60481K).




DOI: https://doi.org/10.2298/JSC201106071Z

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)