Assessment of density functional approximations for calculation of exchange coupling constants in thiocyanato and cyanato double bridged binuclear Ni(II) complexes

Main Article Content

Matija Zlatar
http://orcid.org/0000-0002-3809-0940
Filip Vlahović
http://orcid.org/0000-0001-6172-6612
Dragana Mitić
http://orcid.org/0000-0001-5167-808X
Mario Zlatović
http://orcid.org/0000-0003-4311-1731
Maja Gruden
http://orcid.org/0000-0002-0746-5754

Abstract

In the present work, we examine the magnetic properties of 8 “end-to-end” thiocyanato, and 3 “end-to-end” cyanato double bridged Ni(II) binuc­lear complexes. Thiocyanato complexes are weakly ferromagnetic. Cyanato brid­ged complexes exhibit weak antiferromagnetic coupling. There­fore, it is a chal­lenge for computational chemistry to calculate the exchange coupling constant in these systems accurately. 17 different density functional approxim­ations with different flavours are used to find the method of choice to study magnetic properties in binuclear Ni(II) complexes within the broken-symmetry approach. It is found that M06-2X and PWPB95 performed the best compared to the experimental values for the entire set of examined complexes. Further­more, the magneto-structural correlation rationalizes the results.

Article Details

How to Cite
[1]
M. Zlatar, F. Vlahović, D. Mitić, M. Zlatović, and M. Gruden, “Assessment of density functional approximations for calculation of exchange coupling constants in thiocyanato and cyanato double bridged binuclear Ni(II) complexes”, J. Serb. Chem. Soc., vol. 85, no. 12, pp. 1577–1590, Dec. 2020.
Section
Inorganic Chemistry

References

G. Li, D. Zhu, X. Wang, Z. Su, M. R. Bryce, Chem. Soc. Rev. 49 (2020) 765 (https://doi.org/10.1039/c8cs00660a)

D. M. Zink, M. Bächle, T. Baumann, M. Nieger, M. Kühn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, S. Bräse, Inorg. Chem. 52 (2013) 2292 (https://doi.org/10.1021/ic300979c)

J. He, M. Zeng, H. Cheng, Z. Chen, F. Liang, Zeitschrift Anorg. Allg. Chem. 639 (2013) 1834 (https://doi.org/10.1002/zaac.201300153)

N. Xiong, G. Zhang, X. Sun, R. Zeng, Chinese J. Chem. 38 (2020) 185 (https://doi.org/10.1002/cjoc.201900371)

M. Jarenmark, H. Carlsson, E. Nordlander, Comptes Rendus Chim. 10 (2007) 433 (https://doi.org/10.1016/j.crci.2007.02.015)

D. Venegas-Yazigi, D. Aravena, E. Spodine, E. Ruiz, S. Alvarez, Coord. Chem. Rev. 254 (2010) 2086 (https://doi.org/10.1016/j.ccr.2010.04.003)

P. Ghorai, P. Brandão, S. Benmansour, C. J. G. García, A. Saha, Polyhedron 188 (2020) 114708 (https://doi.org/10.1016/j.poly.2020.114708)

A. L. Gavrilova, C. J. Qin, R. D. Sommer, A. L. Rheingold, B. Bosnich, J. Am. Chem. Soc. 124 (2002) 1714 (https://doi.org/10.1021/ja012386z)

C. Incarvito, A. L. Rheingold, C. J. Qin, A. L. Gavrilova, B. Bosnich, Inorg. Chem. 40 (2001) 1386 (https://doi.org/10.1021/ic0012773)

K. Shanmuga Bharathi, S. Sreedaran, A. Kalilur Rahiman, V. Narayanan, Spectrochim. Acta, A 105 (2013) 245 (https://doi.org/10.1016/j.saa.2012.12.031)

D. Ghosh, S. Mukhopadhyay, S. Samanta, K.-Y. Choi, A. Endo, M. Chaudhury, Inorg. Chem. 42 (2003) 7189 (https://doi.org/10.1021/ic034314)

J. Burmeister, Coord. Chem. Rev. 105 (1990) 77 (https://doi.org/10.1016/0010-8545(90)80019-P)

T. S. Mahapatra, S. Chaudhury, S. Dasgupta, V. Bertolasi, D. Ray, New J. Chem. 40 (2016) 2268 (https://doi.org/10.1039/c5nj02410b)

P. Bhowmik, S. Chattopadhyay, M. G. B. Drew, C. Diaz, A. Ghosh, Polyhedron 29 (2010) 2637 (https://doi.org/10.1016/j.poly.2010.06.014)

T. Mallah, M. L. Boillot, O. Kahn, J. Gouteron, S. Jeannin, Y. Jeannin, Inorg. Chem. 25 (1986) 3058 (https://doi.org/10.1021/ic00237a027)

O. Kahn, T. Mallah, J. Gouteron, S. Jeannin, Y. Jeannin, J. Chem. Soc. Dalt. Trans. (1989) 1117 (https://doi.org/10.1039/DT9890001117)

J. Carranza, J. Sletten, F. Lloret, M. Julve, J. Mol. Struct. 890 (2008) 31 (https://doi.org/10.1016/j.molstruc.2007.11.034)

A. E. Mauro, S. I. Klein, J. S. Saldaña, C. A. De Simone, J. Zukerman-Schpector, E. E. Castellano, Polyhedron 9 (1990) 2937 (https://doi.org/10.1016/S0277-5387(00)84204-7)

S. Youngme, J. Phatchimkun, U. Suksangpanya, C. Pakawatchai, G. A. Van Albada, J. Reedijk, Inorg. Chem. Commun. 8 (2005) 882 (https://doi.org/10.1016/j.inoche.2005.06.024)

C. Diaz, J. Ribas, M. Salah El Fallah, X. Solans, M. Font-Bardía, Inorg. Chim. Acta 312 (2001) 1 (https://doi.org/10.1016/S0020-1693(00)00281-4)

T. Rojo, R. Cortés, L. Lezama, M. I. Arriortua, K. Urtiaga, G. Villeneuve, J. Chem. Soc. Dalt. Trans. (1991) 1779 (https://doi.org/10.1039/DT9910001779)

D. M. Duggan, D. N. Hendrickson, Inorg. Chem. 13 (1974) 2056 (https://doi.org/10.1021/ic50139a003)

D. M. Duggan, D. N. Hendrickson, Inorg. Chem. 13 (1974) 2929 (https://doi.org/10.1021/ic50142a031)

W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim, 2001 (https://doi.org/10.1002/3527600043)

R. G. Parr, Density Functional Theory of Atoms and Molecules, in Horizons Quantum Chem., Springer, Amsterdam, 1980, pp. 5–15 (https://doi.org/10.1007/978-94-009-9027-2_2)

O. Kahn, Molecular magnetism, VCH‐Verlag, Weinheim, 1993 (ISBN 3‐527‐89566‐3)

L. Noodleman, J. Chem. Phys. 74 (1981) 5737 (https://doi.org/10.1063/1.440939)

L. Noodleman, E. R. Davidson, Chem. Phys. 109 (1986) 131 (https://doi.org/10.1016/0301-0104(86)80192-6)

F. Neese, Coord. Chem. Rev. 253 (2009) 526 (https://doi.org/10.1016/j.ccr.2008.05.014)

A. Bencini, F. Totti, J. Chem. Theory Comput. 5 (2009) 144 (https://doi.org/10.1021/ct800361x)

G. David, N. Guihéry, N. Ferré, J. Chem. Theory Comput. 13 (2017) 6253 (https://doi.org/10.1021/acs.jctc.7b00976)

S. Ninova, V. Lanzilotto, L. Malavolti, L. Rigamonti, B. Cortigiani, M. Mannini, F. Totti, R. Sessoli, J. Mater. Chem., C 2 (2014) 9599 (https://doi.org/10.1039/c4tc01647e)

J. E. Peralta, J. I. Melo, J. Chem. Theory Comput. 6 (2010) 1894 (https://doi.org/10.1021/ct100104v)

J. J. Phillips, J. E. Peralta, J. Chem. Phys. 138 (2013) 174115 (https://doi.org/10.1063/1.4802776)

N. A. G. Bandeira, B. Le Guennic, J. Phys. Chem., A 116 (2012) 3465 (https://doi.org/10.1021/jp300618v)

T. Keškić, Z. Jagličić, A. Pevec, B. Čobeljić, D. Radanović, M. Gruden, I. Turel, K. Anđelković, I. Brčeski, M. Zlatar, Polyhedron 191 (2020) 114802 (https://doi.org/10.1016/j.poly.2020.114802)

S. Grimme, J. Chem. Phys. 124 (2006) 034108 (https://doi.org/10.1063/1.2148954)

L. Goerigk, S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (2014) 576 (https://doi.org/10.1002/wcms.1193)

D. A. Pantazis, Inorganics 7 (2019) 57 (https://doi.org/10.3390/inorganics7050057)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (https://doi.org/10.1002/wcms.81)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 (2018) e1327 (https://doi.org/10.1002/wcms.1327)

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297 (https://doi.org/10.1039/b508541a)

D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 4 (2008) 908 (https://doi.org/10.1021/ct800047t)

C. van Wüllen, J. Chem. Phys. 109 (1998) 392 (https://doi.org/10.1063/1.476576)

D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 5 (2009) 2229 (https://doi.org/10.1021/ct900090f)

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057 (https://doi.org/10.1039/b515623h)

F. Neese, J. Chem. Phys. 115 (2001) 11080 (https://doi.org/10.1063/1.1419058)

F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98 (https://doi.org/10.1016/j.chemphys.2008.10.036)

A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587 (https://doi.org/10.1007/s00214-007-0250-5)

A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)

J. P. Perdew, Phys. Rev., B 33 (1986) 8822 (https://doi.org/10.1103/PhysRevB.33.8822)

J. P. Perdew, Phys. Rev., B 34 (1986) 7406 (https://doi.org/10.1103/PhysRevB.34.7406)

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 98 (1993) 5612 (https://doi.org/10.1063/1.464906)

T. V. Russo, R. L. Martin, P. J. Hay, J. Chem. Phys. 101 (1994) 7729 (https://doi.org/10.1063/1.468265)

N. C. Handy, A. J. Cohen, Mol. Phys. 99 (2001) 403 (https://doi.org/10.1080/00268970010018431)

M. Swart, A. W. Ehlers, K. Lammertsma, Mol. Phys. 102 (2004) 2467 (https://doi.org/10.1080/0026897042000275017)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 (https://doi.org/10.1063/1.2370993)

V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 119 (2003) 12129 (https://doi.org/10.1063/1.1626543)

J. Tao, J. Perdew, V. Staroverov, G. Scuseria, Phys. Rev. Lett. 91 (2003) 146401 (https://doi.org/10.1103/PhysRevLett.91.146401)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

M. Reiher, O. Salomon, B. Artur Hess, Theor. Chem. Accounts Theory, Comput. Model. (Theor. Chim. Acta) 107 (2001) 48 (https://doi.org/10.1007/s00214-001-0300-3)

L. Goerigk, S. Grimme, J. Chem. Theory Comput. 7 (2010) 291 (https://doi.org/10.1021/ct100466k)

H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 115 (2001) 3540 (https://doi.org/10.1063/1.1383587)

Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, K. Hirao, J. Chem. Phys. 120 (2004) 8425 (https://doi.org/10.1063/1.1688752)

T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 393 (2004) 51 (https://doi.org/10.1016/j.cplett.2004.06.011)

J. Da Chai, M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106 (https://doi.org/10.1063/1.2834918)

A. E. Shvelashvili, M. A. Porai-Koshits, A. S. Antsyshkina, J. Struct. Chem. 10 (1969) 552 (https://doi.org/10.1007/BF00743627)

H. D. Bian, W. Gu, Q. Yu, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng, Polyhedron 24 (2005) 2002 (https://doi.org/10.1016/j.poly.2005.06.011)

T. Kumar Maji, G. Mostafa, J. M. Clemente-Juan, J. Ribas, F. Lloret, K. Okamoto, N. R. Chaudhuri, Eur. J. Inorg. Chem. 2003 (2003) 1005 (https://doi.org/10.1002/ejic.200390123)

M. Monfort, J. Ribas, X. Solans, Inorg. Chem. 33 (1994) 4271 (https://doi.org/10.1021/ic00097a013)

F. A. Mautner, M. Scherzer, C. Berger, R. C. Fischer, R. Vicente, S. S. Massoud, Polyhedron 85 (2015) 20 (https://doi.org/10.1016/j.poly.2014.08.031)

A. Escuer, R. Vicente, M. S. El Fallah, X. Solans, M. Font-Bardía, J. Chem. Soc., Dalton Trans. (1996) 1013 (https://doi.org/10.1039/DT9960001013)

Z. Mahendrasinh, S. Ankita, S. B. Kumar, A. Escuer, E. Suresh, Inorg. Chim. Acta 375 (2011) 333 (https://doi.org/10.1016/j.ica.2011.05.027)

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456 (https://doi.org/10.1002/jcc.21759)

T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett. 319 (2000) 223 (https://doi.org/10.1016/S0009-2614(00)00166-4)

A. P. Ginsberg, R. L. Martin, R. W. Brookes, R. C. Sherwood, A. P. Ginsberg, R. L. Martin, R. W. Brookes, R. C. Sherwood, Inorg. Chem. 11 (1972) 2884 (https://doi.org/10.1021/ic50118a006)

C. Adhikary, S. Koner, Coord. Chem. Rev. 254 (2010) 2933 (https://doi.org/10.1016/j.ccr.2010.06.001)

M. Swart, M. Gruden, Acc. Chem. Res. 49 (2016) 2690 (https://doi.org/10.1021/acs.accounts.6b00271)

Y. Zhang, W. Yang, J. Chem. Phys. 109 (1998) 2604 (https://doi.org/10.1063/1.476859)

M. Parthey, M. Kaupp, Chem. Soc. Rev. 43 (2014) 5067 (https://doi.org/10.1039/C3CS60481K).

Most read articles by the same author(s)