Correlation between silane concentration and temperature operated toward conductivity of well-synthesized chitosan-fly ash composite membrane Scientific paper
Main Article Content
Abstract
Composite membrane is synthesized using well-synthesized chitosan as matrix crosslink with fly ash as filler and modified using 3-glicydyloxypropyltrimetoxy silane coupling agent. XRD analysis is carried out to characterize fly ash. While, FTIR characterization is conducted to determine the interaction between chitosan matrix and fly ash that has been modified using silane. The emergence of a new absorption at wave numbers 1118.64 cm-1 shows the interaction between silane and fly ash. In addition, the widening of OH absorption shows that hydrogen bonds are formed between the silane and chitosan. The interaction is also demonstrated by the evenly distributed hills and valleys on AFM topography analysis. Characterizing the composite membrane with TGA analysis is done to determine thermal stability. While, proton conductivity of the composite membranes are measured using EIS. The highest conductivity values are obtained with the addition of 5 % silane concentration of 2.75´10-4 S cm-1 at room temperature, 3.995´10-4 S cm-1 at 40 °C, and 3.909´10-4 S cm-1 at 60 °C. On the contrary, measurements at 80 °C, decomposition in all composite membranes occur. Thus, the crosslinked composite membrane chitosan–fly ash prepared by silane-crosslinking technique has potential to be applied with polymer electrolyte membrane fuel cell (PEMFC).
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
K. Sopian, W. R. Wan Daud, Renew. Energy 31 (2006) 719 (https://dx.doi.org/10.1016/j.renene.2005.09.003)
W. Lü, Z. Liu, C. Wang, Z. Mao, M. Zhang, Chinese J. Chem. Eng. 18 (2010) 856 (https://dx.doi.org/10.1016/S1004-9541(09)60139-7)
Q. Tang, H. Cai, S. Yuan, X. Wang, W. Yuan, Int. J. Hydrogen Energy 38 (2013) 1016 (https://dx.doi.org/10.1016/j.ijhydene.2012.10.107)
V. Neburchilov, J. Martin, H. Wang, J. Zhang, J. Power Sources 169 (2007) 221 (https://dx.doi.org/10.1016/j.jpowsour.2007.03.044)
C. K. S. Pillai, W. Paul, C. P. Sharma, Prog. Polym. Sci. 34 (2009) 641 (https://dx.doi.org/10.1016/j.progpolymsci.2009.04.001)
M. Ahmaruzzaman, Prog. Energy Combust. Sci. 36 (2010) 327 (https://dx.doi.org/10.1016/j.pecs.2009.11.003)
Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, C. Mai, Compos., A 41 (2010) 806 (https://dx.doi.org/10.1016/j.compositesa.2010.03.005)
F. Tan, X. Qiao, J. Chen, H. Wang, Int. J. Adhes. Adhes. 26 (2006) 406 (https://doi.org/10.1016/j.ijadhadh.2005.06.005)
H. Lin, C. Zhao, W. Ma, K. Shao, H. Li, Y. Zhang, H. Na, J. Power Sources 195 (2010) 762 (https://dx.doi.org/10.1016/j.jpowsour.2009.08.020)
M. N. V. Ravi Kumar, React. Funct. Polym. 46 (2000) 1 (https://dx.doi.org/10.1016/S1381-5148(00)00038-9)
M. Kurniasih, D. Windy Dwiasi, Molekul 2 (2007) 79 (http://dx.doi.org/10.20884/1.jm.2007.2.2.36)
R. Anuradha, V. Sreevidya, R. Venkatasubramani, Asian J. Chem. 25 (2013) 1095 (http://dx.doi.org/10.14233/ajchem.2013.13522)
M. Monroy-Barreto, J. C. Aguilar, E. Rodríguez de San Miguel, A. L. Ocampo, M. Muñoz, J. de Gyves, J. Memb. Sci. 344 (2009) 92 (https://dx.doi.org/10.1016/j.memsci.2009.07.039)
M. Fan, Q. Hu, K. Shen, Carbohydr. Polym. 78 (2009) 66 (https://dx.doi.org/10.1016/j.carbpol.2009.03.031)
M. R. Kasaai, Carbohydr. Polym. 71 (2008) 497 (https://dx.doi.org/10.1016/j.carbpol.2007.07.009)
Y. F. Yang, G. S. Gai, Z. F. Cai, Q. R. Chen, J. Hazard. Mater. 133 (2006) 276 (https://dx.doi.org/10.1016/j.jhazmat.2005.10.028)
Z. Sarbak, M. Kramer-Wachowiak, Powder Technol. 123 (2002) 53 (https://dx.doi.org/10.1016/S0032-5910(01)00431-4)
K. Dana, S. Das, S. K. Das, J. Eur. Ceram. Soc. 24 (2004) 3169 (https://dx.doi.org/10.1016/j.jeurceramsoc.2003.10.008)
P. Pei, M. Wang, D. Chen, P. Ren, L. Zhang, Prog. Nat. Sci. Mater. Int. 30 (2020) 751 (https://dx.doi.org/10.1016/j.pnsc.2020.08.015).