Synthesis and biological profiling of novel isocoumarin derivatives and related compounds Scientific paper
Main Article Content
Abstract
In the continuation of our study of substituted isocoumarins a series of novel 3-azolyl isocoumarin and their thio derivatives, including some related lactone compounds was prepared and biologically profiled against C. albicans showing moderate activity with MIC values in range of 4–60 mg mL-1, in general. The additional characterisation of selected compounds was carried out by exploring their activity on CYP3A4 and CYP2D6 enzymes, while experiments on mutagenicity were performed by AMES test. The representative isocoumarins 3b, 4a and 4b showed lower inhibitory activity on CYP enzymes, when compared to the reference inhibitors, ketoconazole and quinidine. Compound 4a showed a higher mutagenic potential than the other two compounds. Further characterization included cytotoxicity profiling against normal MRC5 cells.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Pal, V. Chatare, M. Pal, Curr. Org. Chem. 15 (2011) 782 (https://doi.org/10.2174/138527211794518970)
L. Pochet, R. Frederick, B. Masereel, Curr. Pharm. Des. 10 (2004) 3781 (https://doi.org/10.2174/1381612043382684)
A. Saeed, Eur. J. Med. Chem.116 (2016) 290 (https://doi.org/10.1016/j.ejmech.2016.03.025)
S. Roy, S. Roy, B. Neuenswander, D. Hill, R. C. Larock, J. Comb. Chem. 11 (2009) 1128 ( https://dx.doi.org/10.1021%2Fcc9001197)
P. Manivel, K. Prabakaran,Y. Suneel, S. M. Ghouse, P. M. Vivek, E. Ubba, I. Pugazhenthi, Fazlur-Rahman Nawaz Khan, Res. Chem. Intermed. 41 (2015) 2081 (https://doi.org/10.1007/s11164-013-1333-7)
Z. Xiao, S.Chen, R. Cai, S. Lin, K. Hong, Z. She, Beilstein J. Org. Chem. 12 (2016) 2077 (https://doi.org/10.3762/bjoc.12.196)
J. S. Kumar, B. Thirupataiah, R. Medishetti, A. Ray, S. D. Bele, K. A. Hossain, G. S. Reddy, R. K. Edwin, A. Joseph, N. Kumar, G. G. Shenoy, C. M. Rao, M. Pal, Eur. J. Med. Chem. 201 (2020) 112335 (https://doi.org/10.1016/j.ejmech.2020.112335)
H. Hussain, I. R. Green, Expert. Opin. Ther. Pat. 27 (2017) 1267 (https://doi.org/10.1080/13543776.2017.1344220)
M. Simic, N. Paunovic, I. Boric, J. Randjelovic, S. Vojnovic, J. Nikodinovic-Runic, M. Pekmezovic, V. Savic, Bioorg. Med. Chem. Lett. 26 (2016) 235 (https://doi.org/10.1016/j.bmcl.2015.08.086)
P. Manivel, S. M. Roopan, D. P. Kumar, F. N. Khan, Phosphorus Sulfur Silicon Relat. Elem. 184 (2009) 2576 (https://doi.org/10.1080/10426500802529507)
L. Liu, J. Hu, X-C. Wang, M-J. Zhong, X-Y. Liu, S-D. Yang, Y-M. Liang, Tetrahedron 68 (2012) 5391 (https://www.sciencedirect.com/science/article/pii/S0040402012006746?via%3Dihub)
M. Biagetti, A. Capelli, A. Accetta, L. Carzaniga, U.S. Pat. Appl. Publ. (2015), US 20150166549 A1 20150618
I. A. Koten, R. J. Sauter, Org. Synth. 42 (1962) 26 (http://orgsyn.org/Result.aspx)
H. Stark, M. Krause, A. Rouleau, M. Garbarg, J-C. Schwartz, W. Schunack, Bioorg. Med. Chem. 9 (2001) 191 (https://doi.org/10.1016/S0968-0896(00)00237-6)
Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard – Second edition for yeasts (2002), NCCLS document M27-A2, National Committee for Clinical Laboratory Standards, Wayne, PA, 2002
M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal. 6 (2016) 71 (https://doi.org/10.1016/j.jpha.2015.11.005)
M. B. Hansen, S. E. Nielsen, K. Berg, J Immunol Methods 119 (1989) 203 (https://doi.org/10.1016/0022-1759(89)90397-9)
K. Kamiński, A. Rapacz, J. J. Łuszczki, G. Latacz, J. Obniska, K. Kieć-Kononowicz, B. Filipek, Bioorg. Med. Chem. 23 (2015) 2548 (https://doi.org/10.1016/j.bmc.2015.03.038)
https://www.aniara.com/mm5/PDFs/Literature/Xenometrix_AmesII-Technical-Doc.pdf (accessed 1 November, 2019)
M. P. Drapeau, L. J. Gooßen, Chem. Eur. J. 22 (2016) 18654 (https://doi.org/10.1002/chem.201603263)
D. A. Loginov, V. E. Konoplev, J. Organomet. Chem. 867 (2018) 14 (https://doi.org/10.1016/j.jorganchem.2017.11.013)
K. Suman, K. Prabhakara Rao, V. Anuradha, M. V. Basaveswara Rao, M. Pal, Mini Rev. Med. Chem. 18 (2018) 1064 (http://dx.doi.org/10.2174/1389557518666180117093706)
N. Panda, P. Mishra, I. Mattan, J. Org. Chem. 81 (2016) 1047 (https://doi.org/10.1021/acs.joc.5b02602)
A. P. Molotkov, M. A. Arsenov, D. A. Kapustin, D. V. Muratov, N. E. Shepel, Y. V. Fedorov, A. F. Smolyakov, E. I. Knyazeva, D. A. Lypenko, A. V. Dmitriev, A. E. Aleksandrov, E. I. Maltsev, D. A. Loginov, ChemPlusChem 85 (2020) 334 (https://doi.org/10.1002/cplu.202000048)
Y. S. Kumar, C. Dasaradhan, K. Prabakaran, P. Manivel, F-R. N. Khan, E. D. Jeong, E. H. Chung, Tetrahedron Lett. 56 (2015) 941 (https://doi.org/10.1016/j.tetlet.2014.12.114)
B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 576, (1999) 125 https://doi.org/10.1016/S0022-328X(98)01054-7
J. F. Hartwig, in Modern Arene Chemistry, D. Astruc (Ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002, p.107 (https://doi.org/10.1002/3527601767.ch4)
T. X. Nguyen, M. Abdelmalak, C. Marchand, K. Agama, Y. Pommier, M. Cushman, J. Med. Chem. 58 (2015) 3188 (https://doi.org/10.1021/acs.jmedchem.5b00136)
H. Duddeck, M. Kaiser, Spectrochim. Acta, A (1985) 913 (https://doi.org/10.1016/0584-8539(85)80224-5)
Y. J. Jingjun, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 6043 (https://doi.org/10.1021/ja012610k)
X. Che, C. Sheng, W. Wang, C. Yongbing, X. Yulan, J. Haitao, D. Guoqiang, M. Zhenyuan, Y. Jianzhong, Z. Wannian, Eur. J. Med. Chem. 44 (2009) 4218 (https://doi.org/10.1016/j.ejmech.2009.05.018)
S. Sandhu, H. Shukla, R. Aharwal, S. Kumar S, S. Shukla, Nat. Prod. J. 4 (2014) 140 (https://doi.org/10.2174/221031550402141009100632)
D. A. Erlanson, S. W. Fesik, R.E. Hubbard, W. Jahnke, H. Jhoti, Nat. Rev. Drug Discov. 15 (2016) 605 (https://doi.org/10.1038/nrd.2016.109)
X-L. Yang, S. Zhang, Q-B. Hu, D-Q. Luo, Y. Zhang, J. Antibiot. (Tokyo) 64 (2011) 723 (https://doi.org/10.1038/ja.2011.82)
Y-Y. Xu, A-R. Qian, X-F. Cao, C-Y. Ling, Y-B. Cao, R-L. Wang, Y-S. Li, Y-S. Yang, Chinese Chem. Lett. 27 (2016) 703 (https://doi.org/10.1016/j.cclet.2016.01.040)
J. W. Harper, J. C. Powers, Biochemistry 24 (1985) 7200 (https://doi.org/10.1021/bi00346a028)
T. Niwa, Y. Imagawa, H. Yamazaki, Curr. Drug Metab. 15 (2014) 651 https://doi.org/10.2174/1389200215666141125121511
T. Saarikoski, T. I. Saari, N. M. Hagelberg, J. T. Backman, P. J. Neuvonen, M. Scheinin, K. T. Olkkola, K. Laine, Eur. J. Clin. Pharmacol. 71 (2015) 321 (https://doi.org/10.1007/s00228-014-1799-2).