Synthesis and biological profiling of novel isocoumarin derivatives and related compounds Scientific paper

Main Article Content

Milena Radovan Simić
https://orcid.org/0000-0002-0865-5509
Slavica Erić
https://orcid.org/0000-0002-6381-9940
Ivan Borić
Annamaria Lubelska
Gniewomir Latacz
Katarzyna Kieć-Kononowicz
Sandra Vojnović
https://orcid.org/0000-0002-5083-4287
Jasmina Nikodinović-Runić
https://orcid.org/0000-0002-2553-977X
Vladimir Savić
https://orcid.org/0000-0002-0033-1390

Abstract

In the continuation of our study of substituted isocoumarins a series of novel 3-azolyl isocoumarin and their thio derivatives, including some related lactone compounds was prepared and biologically profiled against C. albicans showing moderate activity with MIC values in range of 4–60 mg mL-1, in gen­eral. The additional characterisation of selected compounds was carried out by exploring their activity on CYP3A4 and CYP2D6 enzymes, while experi­ments on mutagenicity were performed by AMES test. The representative isocoum­arins 3b, 4a and 4b showed lower inhibitory activity on CYP enzymes, when compared to the reference inhibitors, ketoconazole and quinidine. Com­pound 4a showed a higher mutagenic potential than the other two compounds. Further characterization included cytotoxicity profiling against normal MRC5 cells.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. R. Simić, “Synthesis and biological profiling of novel isocoumarin derivatives and related compounds: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 7-8, pp. 639–649, Aug. 2021.
Section
Organic Chemistry

References

S. Pal, V. Chatare, M. Pal, Curr. Org. Chem. 15 (2011) 782 (https://doi.org/10.2174/138527211794518970)

L. Pochet, R. Frederick, B. Masereel, Curr. Pharm. Des. 10 (2004) 3781 (https://doi.org/10.2174/1381612043382684)

A. Saeed, Eur. J. Med. Chem.116 (2016) 290 (https://doi.org/10.1016/j.ejmech.2016.03.025)

S. Roy, S. Roy, B. Neuenswander, D. Hill, R. C. Larock, J. Comb. Chem. 11 (2009) 1128 ( https://dx.doi.org/10.1021%2Fcc9001197)

P. Manivel, K. Prabakaran,Y. Suneel, S. M. Ghouse, P. M. Vivek, E. Ubba, I. Pugazhenthi, Fazlur-Rahman Nawaz Khan, Res. Chem. Intermed. 41 (2015) 2081 (https://doi.org/10.1007/s11164-013-1333-7)

Z. Xiao, S.Chen, R. Cai, S. Lin, K. Hong, Z. She, Beilstein J. Org. Chem. 12 (2016) 2077 (https://doi.org/10.3762/bjoc.12.196)

J. S. Kumar, B. Thirupataiah, R. Medishetti, A. Ray, S. D. Bele, K. A. Hossain, G. S. Reddy, R. K. Edwin, A. Joseph, N. Kumar, G. G. Shenoy, C. M. Rao, M. Pal, Eur. J. Med. Chem. 201 (2020) 112335 (https://doi.org/10.1016/j.ejmech.2020.112335)

H. Hussain, I. R. Green, Expert. Opin. Ther. Pat. 27 (2017) 1267 (https://doi.org/10.1080/13543776.2017.1344220)

M. Simic, N. Paunovic, I. Boric, J. Randjelovic, S. Vojnovic, J. Nikodinovic-Runic, M. Pekmezovic, V. Savic, Bioorg. Med. Chem. Lett. 26 (2016) 235 (https://doi.org/10.1016/j.bmcl.2015.08.086)

P. Manivel, S. M. Roopan, D. P. Kumar, F. N. Khan, Phosphorus Sulfur Silicon Relat. Elem. 184 (2009) 2576 (https://doi.org/10.1080/10426500802529507)

L. Liu, J. Hu, X-C. Wang, M-J. Zhong, X-Y. Liu, S-D. Yang, Y-M. Liang, Tetrahedron 68 (2012) 5391 (https://www.sciencedirect.com/science/article/pii/S0040402012006746?via%3Dihub)

M. Biagetti, A. Capelli, A. Accetta, L. Carzaniga, U.S. Pat. Appl. Publ. (2015), US 20150166549 A1 20150618

I. A. Koten, R. J. Sauter, Org. Synth. 42 (1962) 26 (http://orgsyn.org/Result.aspx)

H. Stark, M. Krause, A. Rouleau, M. Garbarg, J-C. Schwartz, W. Schunack, Bioorg. Med. Chem. 9 (2001) 191 (https://doi.org/10.1016/S0968-0896(00)00237-6)

Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard – Second edition for yeasts (2002), NCCLS document M27-A2, National Committee for Clinical Laboratory Standards, Wayne, PA, 2002

M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal. 6 (2016) 71 (https://doi.org/10.1016/j.jpha.2015.11.005)

M. B. Hansen, S. E. Nielsen, K. Berg, J Immunol Methods 119 (1989) 203 (https://doi.org/10.1016/0022-1759(89)90397-9)

K. Kamiński, A. Rapacz, J. J. Łuszczki, G. Latacz, J. Obniska, K. Kieć-Kononowicz, B. Filipek, Bioorg. Med. Chem. 23 (2015) 2548 (https://doi.org/10.1016/j.bmc.2015.03.038)

https://www.aniara.com/mm5/PDFs/Literature/Xenometrix_AmesII-Technical-Doc.pdf (accessed 1 November, 2019)

M. P. Drapeau, L. J. Gooßen, Chem. Eur. J. 22 (2016) 18654 (https://doi.org/10.1002/chem.201603263)

D. A. Loginov, V. E. Konoplev, J. Organomet. Chem. 867 (2018) 14 (https://doi.org/10.1016/j.jorganchem.2017.11.013)

K. Suman, K. Prabhakara Rao, V. Anuradha, M. V. Basaveswara Rao, M. Pal, Mini Rev. Med. Chem. 18 (2018) 1064 (http://dx.doi.org/10.2174/1389557518666180117093706)

N. Panda, P. Mishra, I. Mattan, J. Org. Chem. 81 (2016) 1047 (https://doi.org/10.1021/acs.joc.5b02602)

A. P. Molotkov, M. A. Arsenov, D. A. Kapustin, D. V. Muratov, N. E. Shepel, Y. V. Fedorov, A. F. Smolyakov, E. I. Knyazeva, D. A. Lypenko, A. V. Dmitriev, A. E. Aleksandrov, E. I. Maltsev, D. A. Loginov, ChemPlusChem 85 (2020) 334 (https://doi.org/10.1002/cplu.202000048)

Y. S. Kumar, C. Dasaradhan, K. Prabakaran, P. Manivel, F-R. N. Khan, E. D. Jeong, E. H. Chung, Tetrahedron Lett. 56 (2015) 941 (https://doi.org/10.1016/j.tetlet.2014.12.114)

B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 576, (1999) 125 https://doi.org/10.1016/S0022-328X(98)01054-7

J. F. Hartwig, in Modern Arene Chemistry, D. Astruc (Ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002, p.107 (https://doi.org/10.1002/3527601767.ch4)

T. X. Nguyen, M. Abdelmalak, C. Marchand, K. Agama, Y. Pommier, M. Cushman, J. Med. Chem. 58 (2015) 3188 (https://doi.org/10.1021/acs.jmedchem.5b00136)

H. Duddeck, M. Kaiser, Spectrochim. Acta, A (1985) 913 (https://doi.org/10.1016/0584-8539(85)80224-5)

Y. J. Jingjun, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 6043 (https://doi.org/10.1021/ja012610k)

X. Che, C. Sheng, W. Wang, C. Yongbing, X. Yulan, J. Haitao, D. Guoqiang, M. Zhenyuan, Y. Jianzhong, Z. Wannian, Eur. J. Med. Chem. 44 (2009) 4218 (https://doi.org/10.1016/j.ejmech.2009.05.018)

S. Sandhu, H. Shukla, R. Aharwal, S. Kumar S, S. Shukla, Nat. Prod. J. 4 (2014) 140 (https://doi.org/10.2174/221031550402141009100632)

D. A. Erlanson, S. W. Fesik, R.E. Hubbard, W. Jahnke, H. Jhoti, Nat. Rev. Drug Discov. 15 (2016) 605 (https://doi.org/10.1038/nrd.2016.109)

X-L. Yang, S. Zhang, Q-B. Hu, D-Q. Luo, Y. Zhang, J. Antibiot. (Tokyo) 64 (2011) 723 (https://doi.org/10.1038/ja.2011.82)

Y-Y. Xu, A-R. Qian, X-F. Cao, C-Y. Ling, Y-B. Cao, R-L. Wang, Y-S. Li, Y-S. Yang, Chinese Chem. Lett. 27 (2016) 703 (https://doi.org/10.1016/j.cclet.2016.01.040)

J. W. Harper, J. C. Powers, Biochemistry 24 (1985) 7200 (https://doi.org/10.1021/bi00346a028)

T. Niwa, Y. Imagawa, H. Yamazaki, Curr. Drug Metab. 15 (2014) 651 https://doi.org/10.2174/1389200215666141125121511

T. Saarikoski, T. I. Saari, N. M. Hagelberg, J. T. Backman, P. J. Neuvonen, M. Scheinin, K. T. Olkkola, K. Laine, Eur. J. Clin. Pharmacol. 71 (2015) 321 (https://doi.org/10.1007/s00228-014-1799-2).

Most read articles by the same author(s)