Role of the lattice energy from chemical agents in the activation of highly-condensed carbons Scientific paper

Main Article Content

Eumarielys Mercedes Espinoza
https://orcid.org/0000-0001-6714-3573
Luis F. Isernia
https://orcid.org/0000-0002-1223-0263

Abstract

Highly condensed carbons from pet-coke were first treated with Na/K hydroxides and carbonates and then with H2SO4. The esterification reaction of palmitic acid reached conversions of up to 97 % on the yielded activated carbons. The results evidence the relationship between the efficacy of Na/K hydroxides and carbonates as treatment agents and their lattice potential energy. Moreover, the analysis of carbonaceous solids confirms that both surface area and acidity are primary factors promoting activity in the esterification reaction. Furthermore, the results do not indicate a direct relationship between the activity and the oxidized species (SOx) arising from the treatment with H2SO4. The relatively low melting and decomposition temperature of Na/K hydroxides can improve their effect on the pet-coke matrix, leading to higher surface areas, acidities, and cat­alytic activities than treatment with carbonates. This supports an affinity between the carboxyl functions of the fatty acid molecules and the polar and catalytically active centers of the hydroxide-treated solid surface.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
E. M. Espinoza and L. F. Isernia, “Role of the lattice energy from chemical agents in the activation of highly-condensed carbons: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 10, pp. 983–995, Sep. 2021.
Section
Materials

References

G. G. Stavropoulos, A. Zabaniotou, Fuel Process. Technol. 90 (2009) 952 (https://doi.org/10.1016/j.fuproc.2009.04.002)

D. Zeng, S. Liu, W. Gong, G. Wang, J. Qiu, Y. Tian, Catal. Commun. 40 (2013) 5 (https://doi.org/10.1016/j.catcom.2013.05.018)

S. H. Lee, CS. Choi, Fuel Process. Technol. 64 (2000) 141 (https://doi.org/10.1016/s0378-3820(00)00070-9)

M. A. Lillo, D. Cazorla, A. Linares, Carbon 41 (2003) 267 (https://doi.org/10.1016/S0008-6223(02)00279-8)

A. Onda, T. Ochi, K. Yanagisawa, Green Chem. 10 (2008) 1033 (https://doi.org/10.1039/b808471h)

J. R. Kastner, J. Miller, D. P. Geller, J. Locklin, L. H. Keith, T. Johnson, Catal. Today 190 (2012) 122 (https://doi.org/10.1016/j.cattod.2012.02.006)

L. Fjerbaek, B. G. Rong, K. V. Christensen, B. Norddahl, Comput-Aided Chem. En. 28 (2010) 1099 (https://doi.org/10.1016/S1570-7946(10)28184-1)

L. F. Isernia, Micropor. Mesopor. Mat. 200 (2014) 19 (http://dx.doi.org/10.1016/j.micromeso.2014.08.028)

Y. Feng, B. He, Y. Cao, J. Li, M. Liu, F. Yan, X. Liang, Bioresour. Technol. 101 (2010) 1518 (https://doi.org/10.1016/j.biortech.2009.07.084)

K. H. Chung, D. R. Chang, B. G. Park, Bioresour. Technol. 99 (2008) 7438 (https://doi.org/10.1016/j.biortech.2008.02.031)

A. H. Jalil, Tikrit J. Pure Sci. 17 (2012) 1813. ISSN: 1813 – 1662

M. H. Kalavathy, T. Karthikeyan, S. Rajgopal, L. R. Miranda, J. Colloid Interface Sci. 292 (2005) 354 (http://dx.doi.org/10.1016/j.jcis.2005.05.087)

J. Sahira, A. Mandira, P. B. Prasad, P. R. Ram, Res. J. Chem. Sci. 3 (2013) 19 (ISSN 2231-606X)

P. Ehrburger, A. Addoun, F. Addoun, J. Donnet, Fuel 65 (1986)1447 (https://doi.org/10.1016/0016-2361(86)90121-3)

N. Rambabu, R. Azargohar, A.K. Dalai, J. Adjaye, Fuel Process. Technol. 106 (2013) 501 (https://doi.org/10.1016/j.fuproc.2012.09.019)

K.Y. Foo, B.H. Hameed, Chem. Eng. J. 184 (2012) 57 (http://dx.doi.org/10.1016/j.cej.2011.12.084)

B. S. Girgis, L. B. Khalil, T. A. M. Tawfik, J. Chem. Technol. Biotechnol. 61 (1994) 87 (https://doi.org/10.1002/jctb.280610113)

R. T. Morrison, R. N. Boyd, Organic Chemistry (4th ed.), Allyn and Bacon, Boston, MA, 1983 (ISBN 978-0205058389)

C. H. Yoder, N. J. Flora, Am. Mineral.90 (2005) 488 (https://doi.org/10.2138/am.2005.1537)

D. F. C. Morris, E. L. Short, Nature 224 (1969) 950 (https://doi.org/10.1038/224950a0)

M. Born, J. Mayer, Z. Phys. 75 (1932) 1 (https://doi.org/10.1007/bf01340511)

E. Madelung, Phys. Z. 19 (1918) 524

A. F. Kapustinskii, Z. Phys. Chem. 22 (1933) 257

L. F. Isernia, Ciencia 18 (2010) 43 ISSN: 1315-2076.

P. A. Webb, C. Orr, Analytical Methods in Fine Particle Technology, Micrometrics Instrument Corporation, Norcross, GA, 1997 (ISBN 096567830X)

J. Swanston, in: Ullmanns Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2006 (https://doi.org/10.1002/14356007.a26_793.pub2)

H. A. H. Ibrahim, M. M. Ali, Period. Polytech-Chem. 48 (2004) 53

R. Lu, J. Lin, Z. Qu, Struct. Chem. 24 (2013) 507 (https://doi.org/10.1007/s11224-012-0106-z)

B. R. Utz, S. K. Soboezenski, S. Friedman, Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 30 (1985) 35

X. Y. Liu, M. Huang, H. L. Ma, Z. Q. Zhang, J. M. Gao, Y. L. Zhu, X. J. Han, X. Y. Guo, Molecules 15 (2010) 7188 (https://doi.org/10.3390/molecules15107188)

P. R. S. Murray, Principles of organic chemistry: A modern and comprehensive text for schools and colleges, Heinemann Educational, Oxford, 1999 (ISBN 0435656430)

A. Sari, Ö. Iþýldak, Bull. Chem. Soc. Ethiop. 20 (2006) 259 (https://doi.org/10.4314/bcse.v20i2.61410)

H. Topallar, Y. Bayrak, Turk. J. Chem. 23 (1999) 193

J. Chudoba, B. Hrnčiř, E. J. Remmelzwaal, Acta Hydroch. Hydrob. 6 (1978) 153 (http://dx.doi.org/10.1002/aheh.19780060208)

R. P. Seward, K. E. Martin, J. Am. Chem. Soc.71 (1949) 3564 (https://doi.org/10.1021/ja01178a530).