Organophosphorous pesticide removal from water by graphene-based materials – Only adsorption or something else as well? Scientific paper

Main Article Content

Vladan Anićijević
https://orcid.org/0000-0001-8731-1378
Marko Jelić
https://orcid.org/0000-0003-3723-4313
Aleksandar Jovanović
https://orcid.org/0000-0003-1505-838X
Nebojša Potkonjak
https://orcid.org/0000-0002-7390-1470
Igor Pašti
Tamara Lazarević-Pašti
https://orcid.org/0000-0001-6220-2079

Abstract

The extensive use of pesticides requires innovative approaches to remove these compounds from the environment. Carbon materials are tradit­ion­ally used as adsorbents for removing pesticides, and the development of the new sorts of carbon materials allows more advanced approaches in environ­mental applications. Using density functional calculations, we have predicted chemical reaction between the S(O)=P moieties of the organophosphates with point defects in graphene – single vacancies, Stone–Wales defects and epoxy-
-groups. The reaction was confirmed using ultra high performance chro­mato­graphy for two graphene oxide samples and dimethoate as a representative of organophosphates. The exact reaction mechanism is still elusive, but it is unambiguously confirmed that no selective oxidation of dimethoate to more toxic oxo-analog occurs. The presented results can help to develop novel sys­tems for the irreversible conversion of organophosphates to non-toxic com­pounds, without using aggressive chemical agents or external physical factors like UV radiation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
V. Anićijević, M. Jelić, A. Jovanović, N. Potkonjak, I. Pašti, and T. Lazarević-Pašti, “Organophosphorous pesticide removal from water by graphene-based materials – Only adsorption or something else as well? Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 7-8, pp. 699–710, Aug. 2021.
Section
Physical Chemistry

References

J. E. Casida, G. B. Quistad, Chem. Res. Toxicol. 17 (2004) 983 (https://doi.org/10.1021/tx0499259)

M. B. Colovic, D. Z. Krstic, T. D. Lazarevic-Pasti, A. M. Bondzic, V. M. Vasic, Curr. Neuropharmacol. 11 (2013) 315 (https://doi.org/10.2174/1570159X11311030006)

T. Lazarevic-Pašti, A. Leskovac, T. Momić, S. Petrovic, V. Vasic, Curr. Med. Chem. 24 (2017) 3283 (https://doi.org/10.2174/0929867324666170705123509)

T. Lazarević-Pašti, V. Anićijević, M. Baljozović, D. Vasić Anićijević, S. Gutić, V. Vasić, N. V. Skorodumova, I. A. Pašti, Environ. Sci.: Nano 5 (2018) 1482 (https://doi.org/10.1039/C8EN00171E)

T. Mitrović, S. Lazović, B. Nastasijević, I. A.Pašti, V. Vasić, T. Lazarević-Pašti, J. Environ. Manage. 246 (2019) 63 (https://doi.org/10.1016/j.jenvman.2019.05.143)

M. I. Badawy, M. Y. Ghaly, T. A. Gad-Allah, Desalination 194 (2006) 166 (https://doi.org/10.1016/j.desal.2005.09.027 )

T. Matsushita, A. Morimoto, T. Kuriyama, E. Matsumoto, Y. Matsui, N. Shirasaki, T. Kondo, H. Takanashi, T. Kameya, Water Res. 138 (2018) 67 (https://doi.org/10.1016/j.watres.2018.01.028)

Y. Samet, L. Agengui, R. Abdelhedi, J. Electroanal. Chem. 650 (2010) 152 (https://doi.org/10.1016/j.jelechem.2010.08.008)

T. D. Lazarević-Pašti, I. A. Pašti, B. Jokić, B. M. Babić, V. M. Vasić, RSC Adv. 6 (2016) 62128 (https://doi.org/10.1039/C6RA06736K)

M. Valickova, J. Derco, K. Simovicova, Acta Chim. Slovaca 6 (2013) 25 (https://doi.org/10.2478/acs-2013-0005)

M. Vukčević, A. Kalijadis, B. Babić, Z. Laušević, M. Laušević, J. Serb. Chem. Soc. 78 (2013) 1617 (https://doi.org/10.2298/JSC131227006V)

S. M. Maliyekkal, T. S. Sreeprasad, D. Krishnan, S. Kouser, A. Kumar Mishra, U. V. Waghmare, T. Pradeep, Small 9 (2013) 273 (https://doi.org/10.1002/smll.201201125)

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin--Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter 21 (2009) 395502 (https://doi.org/10.1088/0953-8984/21/39/395502)

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865 (https://doi.org/10.1103/physrevlett.77.3865)

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)

H. J. Monkhorst, J. D. Pack, Phys. Rev., B 13 (1976) 5188 (https://doi.org/10.1103/PhysRevB.13.5188)

https://cdn.shopify.com/s/files/1/0191/2296/files/Graphenea_GO_4mgmL_Datasheet_201905.pdf?22 (accessed on January 3, 2021)

http://graphene-supermarket.com/images/P/Graphene%20Oxide-Data-Sheet-Graphene-Supermarket.pdf (accessed on January 3, 2021)

G. L. Ellman, K. D. Courtney, V. Andres jr., R. M. Featherstone, Biochem. Pharmacol. 7 (1961) 88 (https://doi.org/10.1016/0006-2952(61)90145-9)

G. Yang, L. Li, W. Bun Lee, M. Cheung Ng, Engin. Struct. Mater. 19 (2018) 613 (https://doi.org/10.1080/14686996.2018.1494493).