Microwave assisted synthesis of novel spiro diarylidenes and their antimicrobial assay Scientific paper

Main Article Content

Sabita Shroff
https://orcid.org/0000-0001-5192-9483
Prajna Parimita Mohanta
https://orcid.org/0000-0001-6153-0185
Iswar Baitharu
https://orcid.org/0000-0002-3046-2076
Bhawani Prasad Bag
https://orcid.org/0000-0002-8085-3497
Ajay Kumar Behera
https://orcid.org/0000-0001-8466-9251

Abstract

A rapid and high yield microwave assisted synthesis of a series of novel 7,9-bis-(arylidene)-4-methyl-2,6,10-triphenyl-2,3-diazaspiro[4,5]dec-3-ene-1,8-dione has been explored. The spiro diarylidene derivatives having nit­rogen atom and α,β-unsaturated ketone moiety were synthesized by aldol con­densation between 4-methyl-2,6,10-triphenyl-2,3-diazaspiro[4,5]dec-3-ene-1,8-dione and corres­pon­d­ing aryl aldehydes followed by dehydration. The syn­thesized series of novel spirodiarylidene derivatives were characterized using IR, 1H- and 13C-NMR and mass spectra. Density functional theory (DFT) study was performed by Gaussian 09 software. The antimicrobial activities of the synthesized derivatives were evalu­ated against two pathogenic Gram-positive and Gram-negative bacterial strain and three pathogenic fungal species by disk diffusion method. The minimum inhi­bitory concentration was determined by the microbroth dilution technique. The results of the present study demon­strated that the examined compounds marked 5a and 5c, possessing 4-NO2 and 5-Br-2-OH substituents, are found to be more active against Gram-positive bacterium Staphylococcus aureus, 8 and 16 µg mL-1, respectively, and moder­ately active against Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, compared to other synthetic derivatives. However, none of the synthesized derivatives showed any activity against Streptococcus pyro­genes. Compound 5e, possessing 2,4,6-(OCH3)3C6H3 moiety, exhibited broad spectrum activity against all fungal strains under study, but showed no anti­bacterial activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Shroff, P. P. . Mohanta, I. Baitharu, B. P. Bag, and A. K. Behera, “Microwave assisted synthesis of novel spiro diarylidenes and their antimicrobial assay: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 7-8, pp. 813–827, May 2022.
Section
Organic Chemistry

Funding data

References

REFERENCES

M. Grare, M. Mourer, S. Fontanay, J. B. Regnouf-de-Vains, C. Finance, R. E. Duval, J. Antimicrob. Chemother. 60 (2007) 575 (https://dx.doi.org/10.1093/jac/dkm244)

P. Dahiya, S. Purkayastha, Indian J. Pharm. Sci. 74 (2012) 443 (https://dx.doi.org/10.4103/0250-474X.108420)

M. Benabdallah, O. Talhi, F. Nouali, N. Choukchou-Braham, K. Bachari, A. M. S. Silva, Curr. Med. Chem. 25 (2018) 3748 (https://doi.org/10.2174/0929867325666180309124821)

M. A. K. Shakhatreh, M. L. Al-Smadi, O. F. Khabour, F. A. Shuaibu, E. I. Hussein, K. H. Alzoubi, Drug Des. Devel. Ther. 10 (2016) 3653 (https://doi.org/10.2147/DDDT.S116312)

S. Bag, S. Ramar, M. S. Degani, Med. Chem. Res. 18 (2009)309 (https://doi.org/10.1007/s00044-008-9128-x)

M. Funakoshi-Tago, K. Nakamura, R. Tsuruya, M. Hatanaka, T. Mashino, Y. Sonoda, T. Kasahara, Int. Immunopharmacol. 10 (2010) 562 (https://doi.org/10.1016/j.intimp.2010.02.003)

S. J. Yeo, D. X. Liu, H. S. Kim, H. Park, Malar. J. 16 (2017)80 (https://doi.org/10.1186/s12936-017-1725-z)

W. M. El-Husseiny, M. A. A. El-Sayed, N. I. Abdel-Aziz, A. S. El-Azab, E. R. Ahmed, A. A. M. Abdel-Aziz, J. Enzyme Inhib. Med. Chem. 33 (2018) 507 (https://doi.org/10.1080/14756366.2018.1434519)

R. Pradhan, M. Patra, A. K. Behera, B. K. Mishra, R. K. Behera, Tetrahedron 62 (2006) 779 (https://doi.org/10.1016/j.tet.2005.09.039)

P. Saraswat, G. Jeyabalan, M. Z. Hassan, M. U. Rahman, N. K. Nyola, Synth. Commun. 46 (2016) 1643 (https://doi.org/10.1080/00397911.2016.1211704)

M. Palomba, L. Rossi, L. Sancineto, E. Tramontano, A. Corona, L. Bagnoli, C. Santi, C. Pannecouque, O. Tabarrini, F. Marini, Org. Biomol. Chem. 14 (2016)2015 (https://doi.org/10.1039/c5ob02451j)

K. Chakraborty, T. Antony, Nat. Prod. Res. 35 (2021)1 (https://doi.org/10.1080/14786419.2019.1608545)

K. Meena, S. Kumari, J. M. Khurana, A. Malik, C. Sharma, H. Panwar, Chin. Chem. Lett. 28 (2017) 136 (https://doi.org/10.1016/j.cclet.2016.06.025)

J. P. Strachan, J. J. Farias, J. Zhang, W. S. Caldwell, B. S. Bhatti, Bioorg. Med. Chem. Lett. 22 (2012) 5089 (https://doi.org/10.1016/j.bmcl.2012.05.108)

A. Jasper, D. Schepmann, K. Lehmkuhl, J. M. Vela, H. Buschmann, J. Holenz, B. Wünsch, Eur. J. Med. Chem. 53 (2012) 327 (https://doi.org/10.1016/j.ejmech.2012.04.018)

A. S. Girgis, S. S. Panda, I. S. A. Farag, A. M. El-Shabiny, A. M. Moustafa, N. S. M. Ismail, G. G. Pillai, C. S. Panda, C. D. Hall, A. R. Katritzky, Org. Biomol. Chem. 13 (2015) 1741 (https://doi.org/10.1039/c4ob02149e)

R. K. Behera, A. K. Behera, R. Pradhan, A. Pati, & M. Patra, Synth. Commun. 36 (2006) 3729 (https://doi.org/10.1080/00397910600946231)

P. Prasanna, K. Balamurugan, S. Perumal, P. Yogeeswari, D. Sriram, Eur. J. Med. Chem. 45 (2010) 5663 (https://doi.org/10.1016/j.ejmech.2010.09.019)

R. Sakhuja, K. Bajaj, S. M. Abdul Shakoor, & A. Kumar, Mini. Rev. Org. Chem. 11 (2014) 55 (https://doi.org/10.2174/1570193x1101140402101513)

A. R. Suresh Babu, R. Raghunathan, Tetrahedron Lett. 48 (2007) 305 (https://doi.org/10.1016/j.tetlet.2006.11.012)

G. Sridhar, T. Gunasundari, R. Raghunathan, Tetrahedron Lett. 48 (2007) 319 (https://doi.org/10.1016/j.tetlet.2006.11.002)

E. D. Becker, High resolution NMR Theory and Chemical Applications, 3rd ed., Academic Press, London, 2000, p. 83 (https://doi.org/10.1016/B978-0-12-084662-7.X5044-3)

Gaussian 16, Rev. C. 01, Gaussian, Inc., Wallingford, CT, 2016 (https://gaussian.com/)

B. S. Furniss, A. J. Hannaford, P. W. Smith, A. R. Tatchell, in Vogel’s Textbook of Practical Organic Chemistry, 4th ed., ELBS and Longman, London, 1990, p. 143

R. Adams, Organic Synthesis, John Wiley, London, 1946, p. 22 (https://library.sciencemadness.org/library/books/organic_reactions_v2.pdf)

I. Wiegand, K. Hilpert, R. E. W. Hancock, Nat. Protoc. 3 (2008) 163 (https://doi.org/10.1038/nprot.2007.521)

J. L. Rodriguez-Tudela, Clin. Microbiol. Infect. 14 (2008) (https://doi.org/10.1111/j.1469-0691.2007.01935.x)

W. S. Bremner, M. G. Organ, J. Comb. Chem. 9 (2007) 14 (https://doi.org/10.1021/cc060130p)

J. Isac-Garcia, J. A. Dobado, F. G. Calvo-Flores, H. Martinez-Garcia, Chemistry: Laboratory Manual, Academic Press, London, 2016, p. 239 (https://doi.org/10.1016/C2015-0-00644-X)

S. N. López, M. V. Castelli, S. A. Zacchino, J. N. Domínguez, G. Lobo, J. Charris-

-Charris, J. C. G. Cortés, J. C. Ribas, C. Devia, A. M. Rodríguez, R. D. Enriz, Bioorganic Med. Chem. 9 (2001)1999 (https://doi.org/10.1016/S0968-0896(01)00116-X).