Density functional theory calculations and molecular docking of 2-phenylbenzimidazoles with estrogen receptor for quantitative structure–activity relationship studies Scientific paper

Main Article Content

Nosrat Madadi Mahani
https://orcid.org/0000-0001-6967-5979
Sayed Zia Mohammadi
https://orcid.org/0000-0001-6980-9121
Khadije Anjomshoa
https://orcid.org/0000-0001-8699-2669

Abstract

Benzimidazole derivatives, especially 2-phenylbenzimidazole with various substituents on the C-5, C-2 and C-6 positions, are so important in phar­ma­ceutical chemistry. Multiple linear regression was applied to predict the activity of 27 novel 2-phenylbenzimidazole derivatives as anticancer agents. At first, we made an effort to create a QSAR model for a selected series of novel 2-phenyl­benzimidazole with density functional theory and molecular docking descriptors. Then, we tried to investigate the nature of the interactions between 2-pheny­lbenzimidazole derivatives and the estrogen receptor using the mole­cular docking method. Six descriptors of MATS4e, GATS5e, R6v, R1v+, dip­ole moment, and torsional free energy were selected for modelling. Due to docking results, increase in the binding energy, and decrease in the dipole moment could increase inhibitor activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Madadi Mahani, S. Z. . Mohammadi, and K. . Anjomshoa, “Density functional theory calculations and molecular docking of 2-phenylbenzimidazoles with estrogen receptor for quantitative structure–activity relationship studies: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 2, pp. 193–203, Sep. 2021.
Section
Theoretical Chemistry

References

J. M. Hall, J. F. Couse, K. S. Korach, J. Biol. Chem. 296 (2001) 1642 (https://doi.org/10.1074/jbc.R100029200)

J. D. Yager, N. E. Davidson, New Engl. J. Med. 354 (2006) 270 (https://doi.org/10.1056/NEJMra050776)

R. Abonia, E. Cortes, B. Insuasty, J. Quiroga, M. Nogueras, J. Cobo, Eur. J. Med. Chem. 46 (2011) 4062 (https://doi.org/10.1016/j.ejmech.2011.06.006)

H. Kkbay, R. Durmazt, N. Sirecitt, S. Gnalt , Asian J. Chem. 21 (2009) 6181

P. T. Nguyen, J. D. Baldeck, J. Olsson, R. E.Marquis, Oral Microbiol. Immunol. 20 (2005) 93 (https://doi.org/10.1111/j.1399-302X.2004.00197.x)

N. C. Desai, A. M. Dodiya, N. R. Shihory, Med. Chem. Res. 21 (2012) 2579 (https://doi.org/ 10.1007/s00044-011-9782-2)

S. Dixit, P. Kumar Sharma, N. Kaushik, Med. Chem. Res. 22 (2013) 900 (https://doi.org/10.1007/s00044-012-0083-1)

L. Townsend, D. Wise, Parasitol. Today 6 (1990) 107 (https://doi.org/10.1016/0169-4758(90)90226-T)

S. A. Galal, A. S. Abdelsamie, M. L. Rodriguez, S. M. Kerwin, H.I. El Diwani, Eur. J. Chem. 1 (2010) 67 (http://doi.org/10.5155/eurjchem.1.2.67-72.1)

C. Karthikeyan, V. R. Solomon, H. Lee, P. Trivedi, Arabian J. Chem. 10 (2017) S1788 (https://doi.org/10.1016/j.arabjc.2013.07.003)

T. Huynh, T. Nguyen, T. Nguyen, T. Hoang, RSC Adv. 10 (2020) 20543 (https://doi.org/10.1039/D0RA02282A)

H. Hadni, M. Mazigh, E. Charif, A. Bouayad, M. Elhallaoui, Biochem. Res. Int. 2018 (2018) 1 (https://doi.org/10.13171/mjc93190924930hh)

R. Dias, W. Filgueira de Azevedo Jr., Curr. Drug Targets 9 (2008) 1040 (https://doi.org/10.2174/138945008786949432)

N. Escala, E. Valderas-Garcia, M. Alvarez Bardon, V. Castilla Gomez de Aguero, R. Escarcena, J. LuisLopez-Perez, F. A. Rojo-Vazquez, A. Feliciano, R.Balaña-Fouce, M.Martínez-Valladares, E. del Olmo, Eur. J. Med. Chem. 208 (2020) 112554 (https://doi.org/10.1016/j.ejmech.2020.112554)

Y. K. Yoon, M. A. Ali, A.C. Wei, T. S. Choon, K. Y. Khaw, V. Murugaiyah, H. Osman, V. H. Masand, Bioorg. Chem. 49 (2013) 33 (https://doi.org/10.1016/j.bioorg.2013.06.008)

C. S. Mizuno, A. G. Chittiboyina, F. H. Shah, A. Patny, T. W. Kurtz, H. A. Pershadsingh, R. C. Speth, V. T. Karamyan, P. B. Carvalho, M. A. Avery, J. Med. Chem. 53 (2010) 1076 (https://doi.org/10.1021/jm901272d)

C. F Lagos, J. Caballero, F. D Gonzalez-Nilo, C. D. Pessoa-Mahana, T. Perez-Acle, Chem. Biol. Drug Des. 72 (2008) 360 (https://doi.org/10.1111/j.1747-0285.2008.00716.x)

M. Beglari, N. Goudarzi, D. Shahsavani, M. Arab Chamjangali, Z. Mozafari, Struct. Chem. 31 (2020) 1481 (https://doi.org/10.1007/s11224-020-01505-z)

R. Parr, W. Yang, Density functional theory of atoms and molecules, Oxford University Press, New York, 1989

Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

A. Siiskonen, A. Priimagi, J. Mol. Model. 23 (2017) 3112 (https://doi.org/10.1007/s00894-017-3212-4)

G. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J Olson, J. Comput. Chem. 30 (2009) 2785 (https://doi.org/10.1002/jcc.21256)

Y. S. Mary, H. T. Varghese, C. Y. Panicker, M. Girisha, B. K. Sagar, H. S. Yathirajan, A. A. Al-Saadi, C. Van Alsenoy, Spectrochim. Acta, A 150 (2015) 543 (https://doi.org/10.1016/j.saa.2015.05.090).