Statistical optimization of bioethanol production from waste bread hydrolysate Scientific paper
Main Article Content
Abstract
A recent trend in sustainable bioethanol production is the use of agricultural waste or food waste as an inexpensive and the most available feedstock. Bread waste is the major food waste that could be successfully used for the production of bioethanol. The aim of this study was to optimize ethanol production by the response surface methodology (RSM) using waste bread hydrolysate. Waste bread hydrolysate was obtained using crude hydrolytic enzymes that produce bacterial isolate Hymenobacter sp. CKS3. The influence of time of fermentation (24–72 h) and waste brewers yeast inoculum (1–4 %) on ethanol production was studied. The optimal conditions, obtained by central composite design (CCD), were 48.6 h of fermentation and 2.85 % of inoculum. Under these conditions, a maximum of 2.06 % of ethanol concentration was reached. The obtained ethanol concentration was in good correlation, coefficient of 0.858, with yeast cell yield. The results obtained in this study imply that waste bread hydrolysate could be used as a biomass source for biofuel production with multiple benefits relating to environmental protection, reduction of production costs, and saving fossil fuels.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Tiwari, S. Jadhav, K. Tiwari, Int. J. Environ. Sci. Technol. 12 (2015) 3819 (https://doi.org/10.1007/s13762-014-0746-1)
S. Rezania, B. Oryani, J. Cho, A. Talaiekhozani, F. Sabbagh, B. Hashemi, P. F. Rupani, A. A. Mohammadi, Energy 199 (2020) 117457 (https://doi.org/10.1016/j.energy.2020.117457)
E. Demiray, S. E. Karatay, G. Dönmez, Environ. Sci. Pollut. Res. 26 (2019) 29366. (https://doi.org/10.1007/s11356-019-06020-1)
S. Nikolić, J. Pejin, L. Mojović, Chem. Ind. Chem. Eng. Q. 22 (2016) 1 (https://doi.org/10.2298/CICEQ151030001N)
H. S. Hafid, U. K. M. Shah, A. S. Baharuddin, A. B. Ariff, Renew. Sustain. Energy Rev. 74 (2017) 671 (https://doi.org/10.1016/j.rser.2017.02.071)
A. Walter, F. Rosillo-Calle, P. Dolzan, E. Piacente, K. B. da Cunha, Biomass Bioenergy 32 (2008) 730 (https://doi.org/10.1016/j.biombioe.2008.01.026)
P. Dinesha, S. Kumar, M. A. Rosen, Environ. Sci. Pollut. Res. 26 (2019) 8069 (https://doi.org/10.1007/s11356-019-04270-7)
J. Dodić, J. Grahovac, Z. Rončević, R. Pajović-Šćepanović, S. Dodić, B. Bajić, D. Vučurović, J. Process. Energy Agric. 22 (2018) 34 (https://doi.org/10.5937/JPEA1801034D)
C. A. Cardona, Ó. J. Sánchez, Biores. Technol. 98 (2007) 2415 (https://doi.орг/10.1016/j.biortech.2007.01.002)
J. R. Kwiatkowski, A. J. McAloon, F. Taylor, D. B. Johnston, Ind. Crop Prod. 23 (2006) 288 (https://doi.org/10.1016/j.indcrop.2005.08.004)
A. S. Demirci, I. Palabıyık, T. Gümüs, Ş. Özalp, Waste Biomass Valor. 8 (2017) 775 (https://doi.org/10.1016/j.indcrop.2005.08.004)
A. L. Young, Environ. Sci. Pollut. Res. 16 (2009) 117 (https://doi.org/10.1007/s11356-009-0106-8)
W. Pietrzak, J. Kawa-Rygielska, Fuel 134 (2014) 250 (https://doi.org/10.1016/j.fuel.2014.05.081)
K. C. Thomas, W. Ingledew, Appl. Environ. Microbiol. 56 (1990) 2046 (https://doi.org/10.1007/BF02916454)
R. Ravindran, S. Hassan, G. Williams, A. Jaiswal, Bioeng. 5 (2018) 93 (https://doi.org/10.3390/bioengineering5040093)
K. Mihajlovski, M. Rajilić-Stojanović, S. Dimitrijević-Branković, Renew. Energy 152 (2020) 627 (https://doi.org/10.1016/j.renene.2020.01.101)
G. L. Miller, Anal. Chem. 31 (1959) 426 (https://doi.org/10.1021/ac60147a030)
K. Mihajlovski, Ž. Radovanović, M. Carević, S. Dimitrijević-Branković, Fuel 224 (2018) 591 (https://doi:10.1016/j.fuel.2018.03.135)
W. Horwitz, P. Chichilo, H. Reynolds, Official methods of analysis of the Association of Official Analytical Chemists, 1970 (https://www.cabdirect.org/cabdirect/abstract/19720492404)
D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, New York, 2008 (ISBN: 9781119113478)
M. A. Saeed, H. Ma, S. Yue, Q. Wang, M. Tu, Environ. Sci. Pollut. Res. 25 (2018) 28851 (https://doi.org/10.1007/s11356-018-2972-4)
T. W. Nagodawithana, K. H. Steinkraus, Appl. Environ. Microbiol. 31 (1976) 158 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169741/pdf/aem00002-0022.pdf)
G. Izmirlioglu, A. Demirci, Appl. Sci. 2 (2012) 738 (https://doi.org/10.3390/app2040738)
S. H. Mohd Azhar, R. Abdulla, S. A. Jambo, H. Marbawi, J. A. Gansau, A. A. Mohd Faik, K. F. Rodrigues, B. B. Reports 10 (2017) 52 (https://doi.org/10.1016/j.bbrep.2017.03.003)
F. Bai, W. Anderson, M. Moo-Young, Biotechnol. Adv. 26 (2008) 89 (https://doi.org/10.1016/j.biotechadv.2007.09.002)
O. O. Awolu, I. O. Ibileke, Afr. J. Food Sci. 5 (2011)148 (https://academicjournals.org/journal/AJFS/article-full-text-pdf/CBEEF3D3037)
P. Datta, S. Tiwari, L. Pandey, in Utilization and Management of Bioresources, Springer, Singapore, 2018 (https://doi.org/10.1007/978-981-10-5349-8)
F. Ebrahimi, M. Khanahmadi, S. Roodpeyma, M. J. Taherzadeh, Biomass Bioenergy 32 (2008) 333 (https://doi.org/10.1016/j.biombioe.2007.10.007)
J. Kawa-Rygielska, W. Pietrzak, A. Czubaszek, Biomass Bioenergy 44 (2012) 17 (https://doi.org/10.1016/j.biombioe.2012.04.016)
L. R. Lynd, H.-J. Ahn, G. Anderson, P. Hill, D. S. Kersey, T. Klapatch, Appl.Biochem. Biotechnol. 28 (1991) 549 (https://doi.org/10.1007/BF02922633)
M. E. Ojewumi, O. E. Kolawole, D. Oyekunle, O. S. Taiwo, A. Adeyemi, J. Ecol. Eng. 20 (2019) 35 (https://doi.org/10.12911/22998993/102614)
G. M. Walker, G. G. Stewart, Beverages 2 (2016) 30 (https://doi.org/10.3390/beverages2040030).