Development of a method for the derivatization of ethanolamines and its application to sand samples Scientific paper
Main Article Content
Abstract
Nitrogen mustards are dangerous and available blistering chemical warfare agents. In the presented study, six derivatization methods are compared for the analysis of degradation products of the most important blistering nitrogen mustards (ethyl diethanolamine, methyl diethanolamine and triethanolamine) by gas chromatography coupled with mass spectrometry. Five silylation methods (using BSTFA and BSA) and one trifluoroacetylation method (using TFAA) were tested. The derivatization reactions were performed in acetonitrile. As the method with optimal results, trifluoroacetylation by TFAA was selected. Analytes reacted with the corresponding reagent rapidly, quantitatively, with stable kinetics and at room temperature. Calibration curves for quantitative analysis of ethanolamines after TFAA derivatization were created. The corresponding detection limits varied between 9´10-3 and 7´10-5 mmol·dm-3 for the tested analytes. The developed method was applied for the analysis of ethanolamines after extraction from sand using acetonitrile. Limits of detection were 11.4 to 12.3 µg of the analyte in 1 g of sand. The use of the developed method in military deployable laboratories designated for the rapid identification of chemical warfare agents and corresponding degradation products is encouraged.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction, OPCW, Paris 2020 (https://www.opcw.org/sites/default/files/documents/CWC/CWC_en.pdf)
T. Rozsypal, JPC-J. Planar Chromatоgr. 33 (2020) 669 (https://doi.org/10.1007/s00764-020-00072-7)
Y.-H. Jan, D. E. Heck, D. L. Laskin, J. D. Laskin, Toxicol. Lett. 326 (2020) 78 (https://doi.org/10.1016/j.toxlet.2020.03.008)
N. Tewari-Singh, R. Agarwal, Ann. NY Acad. Sci. 1374 (2016) 184 (https://doi.org/10.1111/nyas.13099)
H.-C. Chua, H.-S. Lee, M.-T. Sng, J. Chromatogr., A 1102 (2006) 214 (https://doi.org/10.1016/j.chroma.2005.10.066)
A. Mazumder, A. Kumar, A. K. Purohit, D. K. Dubey, J. Chromatogr., A 1217 (2010) 2887 (https://doi.org/10.1016/j.chroma.2010.02.071)
S. A. Willison, J. Chromatogr., A 1270 (2012) 72 (https://doi.org/10.1016/j.chroma.2012.11.013)
M. Otsuka, H. Miyaguchi, M. Uchiyama, J. Chromatogr., A 1625 (2020) 461306 (https://doi.org/10.1016/j.chroma.2020.461306)
M. Otsuka, H. Miyaguchi, M. Uchiyama, J. Chromatogr., A 1602 (2019) 199 (https://doi.org/10.1016/j.chroma.2019.05.015)
Z. Witkiewicz, M. Mazurek, J. Szulc, J. Chromatogr., A 503 (1990) 293 (https://doi.org/10.1016/S0021-9673(01)81514-4)
R. M. Black, B. Muir, J. Chromatogr., A 1000 (2003) 253 (https://doi.org/10.1016/S0021-9673(03)00183-3)
L. Kenar, O. Alp, J. Chromatogr. Sci. 49 (2011) 631 (https://doi.org/10.1093/chromsci/49.5.361)
I. Ohsawa, Y. Seto, J. Chromatogr., A 1122 (2006) 242 (https://doi.org/10.1016/j.chroma.2006.04.076)
D. Pardasani, M. Palit, A. K. Gupta, P. K. Kanaujia, D. K. Dubey, J. Chromatogr., A 1059 (2004) 157 (https://doi.org/10.1016/j.chroma.2004.10.039)
B. Chandra, K. Sinha Roy, M. Shaik, C. Waghmare, M. Palit, Rapid Commun. Mass Spectrom. 34 (2020) 1 (https://doi.org/10.1002/rcm.8586)
B. Chandra, K. Sinha Roy, M. Shaik, C. Waghmare, M. Palit, Rapid Commun. Mass Spectrom. 34 (2020) 1 (https://doi.org/10.1002/rcm.8777)
P. Garg, A. Purohit, V. K. Tak, D. K. Dubey, J. Chromatogr., A 1216 (2009) 7906 (https://doi.org/10.1016/j.chroma.2009.09.032)
C. A. Valdez, R. N. Leif, S. Hok, A. K. Vu, E. P. Salazar, A. Alcaraz, Sci. Total Environ. 683 (2019) 175 (https://doi.org/10.1016/j.scitotenv.2019.05.205)
R. B. Sousa, P. F. P. M. Alves, S. F. Cavalcante, L. B. Bernardo, C. S. Barros, C. N. Ferreira, A. L. S. Lima, Rev. Virtual Quím. 6 (2014) 601 (https://doi.org/10.5935/1984-6835.20140039)
P. Vanninen, Recommended operating procedures for analysis in the verification of chemical disarmament, University of Helsinki, Helsinki, 2017 (ISBN 978-951-51-
-3917-7)
D. T. D. Qadah, J. H. Aldstadt, Anal. Lett. 51 (2018) 1321 (https://doi.org/10.1080/00032719.2017.1379531)
S. Popiel, M. Sankowska, J. Chromatogr., A 1218 (2011) 8457 (https://doi.org/10.1016/j.chroma.2011.09.066).