DNA protective activity of triterpenoids isolated from medicinal mushroom Fomitopsis betulina Scientific paper
Main Article Content
Abstract
Eleven 31-methylenlanostane triterpenoids, i.e., seven 21- and four 26-oic acids, as well as a lupane triterpenoid betulin, isolated from the fruiting bodies of the mushroom Fomitopsis betulina, were tested for in vitro protective effect on chromosome aberrations in peripheral human lymphocytes using cytochalasin-B blocked micronucleus (CBMN) assay. Most of the tested compounds showed a beneficial effect by reducing DNA damage of human lymphocytes more effectively than amifostine, a radioprotective agent, used as a positive control. All the tested compounds decreased MN frequency in the concentration dependent manner, with the concentration of 2.0 µg mL-1 being the most effective – with increase of the concentration the activity slightly decreases. The structure–activity relationship (SAR) studies indicated that the lanostanes containing a conjugated 7,9 (11)-diene system exhibit lower activity than D8-analogues. It was also demonstrated that the DNA protective activities within the D8-lanostane-26-oic acid group are affected by the substitution in position 3 pattern. In the D8 series the oxygenation at C-12 or 16 as well as 21- or 26-oic acid functionality proved beneficial for in vitro protective effect on chromosomal aberrations. Betulin exhibited the lowest protective activity, but it is still comparable to that of amifostine.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
U. Grienke, J. Mihaly-Bison, D. Schuster, T. Afonyushkin, M. Binder, S. H. Guan, C. R. Cheng, G. Wolber, H. Stuppner, D. A. Guo, V. N. Bochkov, J. M. Rollinger, Bioorg. Med. Chem. 19 (2011) 6779 (https://doi.org/10.1016/j.bmc.2011.09.039)
U. Grienke, J. Zwirchmayr, U. Peintner, E. Urban, M. Zehl, M. Schmidtke, J. M. Rollinger, Planta Med. 85 (2019) 195 (https://doi.org/10.1055/a-0690-9236)
S. R. Lee, S. Lee, E. Moon, H.-J. Park, H. B. Park, K. H. Kim, Bioorg. Chem. 70 (2017) 94 (https://doi.org/10.1016/j.bioorg.2016.11.012)
J.-L. Ríos, I. Andújar, M.-C. Recio, R.-M. Giner J. Nat. Prod. 75 (2012) 2016 (https://doi.org/10.1021/np300412h)
U. Grienke, P. A. Foster, J. Zwirchmayr, A. Tahir, J.M. Rollinger, E. Mikros, Sci. Rep. 9 (2019) 11113 (https://doi.org/10.1038/s41598-019-47434-8)
I. Sofrenic, B. Anđelković, N. Todorović, T. Stanojković, Lj. Vujisić, M. Novaković, S. Milosavljević, V. Tešević, Phytochemistry 181 (2021) 112580 (https://doi.org/10.1016/j.phytochem.2020.112580)
B. S. Min, J. J. Gao, N Nakamura, M. Hattori, Chem. Pharm. Bull. 48 (2000) 1026 (https://doi.org/10.1248/cpb.48.1026)
Z. Tohtahon, J. Xue, J. Han, Y. Liu, H. Hua, T. Yuan, Phytochemistry 143 (2017) 98 (https://doi.org/10.1016/j.phytochem.2017.07.013)
R. C. S. Mata, D. I. M. D. de Mendonça, L. Vieira, A. F. dos Santos, L. A. da Silva, J. F. Gaspar, C. Martins, J. Rueff, A. E. G. Sant'Ana, J. Braz. Chem. Soc. 22 (2011) 35 (https://doi.org/10.1590/S0103-50532011001000008)
M. Fenech, Mutat. Res. 455 (2000) 81 (https://doi.org/10.1016/S0027-5107(00)00065-8)
M. Fenech, W. P. Chang, M. Kirsch-Volders, N. Holland, S. Bonassi, E. Zeiger, Mutat. Res. 534 (2003) 65 (https://doi.org/10.1016/S1383-5718(02)00249-8)
S. B. Carter, Nature 213 (1967) 261 (https://doi.org/10.1038/213261a0)
T. Haaf, E. Raderschall, G. Reddy, D. C. Ward, C. M. Radding, E. I. Golub, J. Cell Biol. 144 (1999) 11 (https://doi.org/10.1083/jcb.144.1.11)
C. J. Ye, Z. Sharpe, S. Alemara, S. Mackenzie, G. Liu, B. Abdallah S. Horne, S. Regan H. H. Heng, Genes 10 (2019) 366 (https://doi.org/10.3390/genes10050366)
I. Vučković, V. Vajs, M. Stanković, V. Tešević, S. Milosavljević, Chem. Biodivers. 7 (2010) 698 (https://doi.org/10.1002/cbdv.200900067)
D. Godevac, V. Tesevic, V. Vajs, S. Milosavljevic, M. Stankovic, Mini-Rev. Med. Chem. 13 (2013) 431 (https://doi.org/10.2174/138955713804999856)
G. Krstić, M. Jadranin, M. Stanković, I. Aljančić, Lj. Vujisić, B. Mandić, V. Tešević, Nat. Prod. Commun. 14 (2019) 1 (https://doi.org/10.1177/1934578X19848168)
M. Cvetkovic, I. Djordjevic, M. Jadranin, M. Stankovic, B. Mandic, S. Milosavljevic, Lj. Vujisic, Nat. Prod. Res. (https://doi.org/10.1080/14786419.2019.1687470)
N. Sekiya, H. Goto, Y. Shimada, Y. Endo, I. Sakakibara, K. Terasawa, Phytother. Res. 17 (2003) 160 (https://doi.org/10.1002/ptr.1097)
L. Zhou, Y. Zhang, L. A. Gapter, H. Ling, R. Agarwal, K. Ng, Chem. Pharm. Bull. 56 (2008) 1459 (https://doi.org/10.1248/cpb.56.1459)
Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. World Medical Association. 9th July 2018 (https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/) (March 30th 2021).
Law on Health Care. Official Gazette of the Republic of Serbia, 2005;107:112 (http://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/viewdoc?uuid=d32f9cf4-1f75-4259-a40b-039099bc8eb5®actid=424598&doctype=reg) (March 30th 2021).
M. Fenech, A. A. Morley, Mutat. Res. 147 (1985) 29 (https://doi.org/10.1016/0165-1161(85)90015-9)
M. Fenech, A. A. Morley, Mutat. Res. 161 (1986) 193 (https://doi.org/10.1016/0027-5107(86)90010-2)
P. I. Countryman, J. A. Heddle, Mutat. Res. 41 (1976) 321 (https://doi.org/10.1016/0027-5107(76)90105-6)
M. Stanković, V. Tešević, V. Vajs, N. Todorović, S. Milosavljević, D. Gođevac, Planta Med. 74 (2008) 730 (10.1055/s-2008-1074521)
J. Surralles, N. Xamena, A. Creus, J. Catalan, H. Norppa, R. Marcos, Mutat Res. 341 (1995) 169 (https://doi.org/10.1016/0165-1218(95)90007-1)
J. Surralle´s, A.T. Natarajan, Mutat. Res. 392 (1997) 165 (https://doi.org/10.1016/S0165-1218(97)00054-2)
K.-H. Lai, M.-C. Lu, Y.-C. Du, M. El-Shazly, T.-Y. Wu, Y.-M. Hsu, A. Henz, J.-C. Yang, A. Backlund, F.-R. Chang, Y.-C. Wu, J. Nat. Prod. 79 (2016) 2805 (https://doi.org/10.1021/acs.jnatprod.6b00575)
H. K. Wangun, A. Berg, W. Hertel, A. Nkengfack, C. Hertweck, J. Antibiot. 57 (2004) 755 (https://doi.org/10.7164/antibiotics.57.755)
T. Kamo, M. Asanoma, H. Shibata, M. Hirota, J. Nat. Prod. 66 (2003) 1104 (https://doi.org/10.1021/np0300479)
Z. Alresly, U. Lindequist, M. Lalk, A. Porzel, N. Arnold, L. Wessjohann, Rec. Nat. Prod. 10 (2016) 103 (https://www.acgpubs.org/doc/2018080518045712-RNP-1410-220.pdf)
X.-R. Peng, H.-G. Su, J.-H. Liu, Y.-J. Huang, X.-Z. Yang, Z.-R. Li, L. Zhou, M.-H. Qiu, J. Agric. Food Chem. 67 (2019) 10330 (https://doi.org/10.1021/acs.jafc.9b04530)
T. Shingu, T. Tai, A. Akahori, Phytochemistry 31 (1992) 2548 (https://doi.org/10.1016/0031-9422(92)83325-S)
T. Roncada, V. E. P. Vicentini, M. S. Mantovani, Toxicol. in Vitro 18 (2004) 617 (https://doi.org/10.1016/j.tiv.2004.02.007)
M. R. Camelo, S. G. F. Kehdy, E. C. Salas, T. P. M. Lopes, Molecules 13 (2008) 1759 (https://doi.org/10.3390/molecules13081759)
D. J. Grdina, Y. Kataoka, J. S. Murley, Drug Metab. Drug Interact.16 (2000) 237 (https://doi.org/10.1515/DMDI.2000.16.4.237)
Y. Nuruki, H. Matsumoto, M. Tsukada, H. Tsukahara, T. Takajo, K. Tsuchida, K. Anzai, Chem. Pharm. Bull. 69 (2021) 67 (https://doi.org/10.1248/cpb.c20-00568)
Z. Sun-Donga, Y. Lianga, W. Penga, K. Pinga, L. Jic, W. Li-Taob, W. Weia, Y. Li-Pinga, Z. Xiu-Huaa, F. Yu-Jie, Phytomedicine 60 (2019) 152957 (https://doi.org/10.1016/j.phymed.2019.152957)
K. M. Atkins, L. L. Thomas, J. Barroso-González, L. Thomas, S. Auclair, J. Yin, H. Kang, J. H. Chung, J. D. Dikeakos, G. Thomas, Cell Rep. 8 (2014) 1545 (https://doi.org/10.1016/j.celrep.2014.07.049).