Synthesis and characterization of Fe3O4/PEG-400/oxalic acid magnetic nanoparticles as a heterogeneous catalyst for the synthesis of pyrrolin-2-ones derivatives Scientific paper

Main Article Content

Seyran Esmailzadeh
Davood Setamdideh
https://orcid.org/0000-0003-4608-9322

Abstract

In this study, oxalic acid was successfully loaded onto Fe3O4/PEG-400 under ultrasonic irradiation and Fe3O4/PEG/oxalic acid as a new nanomagnetic catalyst was synthesized. The chemical structure of the catalyst was investigated by the FT-IR, XRD, EDX and SEM methods. The catalyst was used for the syn­thesis of 3-acyl-5-hydroxy-3-pyrrolin-2-one derivatives from the corresponding aldehydes, anilines and dimethyl acetylenedicarboxylate (DMAD) by a one-pot and three-component MCR reaction in the excellent yields (90–95 %) of products within 24 h at room temperature. Fourteen samples are available. The recovered catalyst could be satisfactorily used for a second and third run without regener­ation. This method has a green and eco-friendly profile. In addition, this research introduces an improved mechanism for these types of reaction. The chemical structures of new compounds was characterized by their FT-IR, 1H-NMR, 13C-NMR and mass spectra.

Article Details

How to Cite
[1]
S. Esmailzadeh and D. Setamdideh, “Synthesis and characterization of Fe3O4/PEG-400/oxalic acid magnetic nanoparticles as a heterogeneous catalyst for the synthesis of pyrrolin-2-ones derivatives: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 11, pp. 1039-1052, Nov. 2021.
Section
Inorganic Chemistry

References

S. Shylesh, V. Schunemann, W. R. Thiel, Angew. Chem. Int. Ed. 49 (2010) 3428 (https://doi.org/10.1002/ange.200905684)

Y. Zhu, L. P. Stubbs, F. Ho, R. Liu, C. P. Ship, J. A. Maguire, N. S. Hosmane, ChemCatChem 2 (2010) 365 (https://doi.org/10.1002/cctc.200900314)

H. Veisi, J. Gholami, H. Ueda, P. Mohammadi, M. Noroozi, J. Mol. Catal., A 365 (2015) 216 (https://doi.org/10.1016/j.molcata.2014.10.012)

R. B. Nasir-Baigand, R. S. Varma, Chem. Commun. 49 (2013) 752 (https://doi.org/10.1039/c2cc35663e)

B. Abbas Khakiani, K. Pourshamsian, H. Veisi, J. Appl. Organometal. Chem. 29 (2015) 259 (https://doi.org/10.1002/aoc.3282)

E. McCafferty, J. P. Wightman, Surf. Interface Anal. 26 (1998) 549 (https://doi.org/10.1002/(sici)1096-9918(199807)26:8<549::aid-sia396>3.0.co;2-q)

P. Riente, C. Mendozaa, M. A. Peric, J. Mater. Chem. 21 (2011) 7350 (https://doi.org/10.1039/c1jm10535c)

a) F. A. Tameh, J. Safaei-Ghomi, M. Mahmoudi-Hashemi, H. Shahbazi-Alavi, RSC Adv. 6 (2016) 74802 (https://doi.org/10.1039/c6ra08458c) b) J. Safaei-Ghomi, F. Eshteghal, Ultra Sonochem. 38 (2017) 488 (https://doi.org/10.1016/j.ultsonch.2017.03.047) c) R. Ghorbani-Vaghei, N. Sarmast, J. Mahmoodi, J. Appl. Organometal. Chem. 31 (2017) e3681 (https://doi.org/10.1002/aoc.3681)

H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, Nano Lett. 4 (2004) 187 (https://doi.org/10.1021/nl035004r)

R. Ghosh, L. Pradhan, Y. Priyabala, D. Meena, R. Tewari, A. Kumar, S. Sharma, G. Vatsa, B. Pandey, R. S. Ningthoujam, J. Mater. Chem. 21 (2011) 13388 (https://doi.org/10.1039/c1jm10092k)

D. Setamdideh, J. Serb. Chem. Soc. 81 (2016) 971 (https://doi.org/10.2298/jsc160202050s)

J. Sun, Q. Wu, E. Y. Xia, C. G. Yan, Eur. J. Org. Chem. (2011) 2981. (https://doi.org/10.1002/ejoc.201100008)

L. P. Dwoskin, L. Teng, S. T. Buxton, P. A. Crooks, J. Pharmacol. Exp. Ther. 288 (1999) 905 (https://jpet.aspetjournals.org/content/288/3/905.short)

P. Singh, V. Dimitriou, R. P. Mahajan, A. W. Crossley, Br. J. Anaesth. 71 (1993) 685 (https://doi.org/10.1093/bja/71.5.685)

P. N. Patsalos, Epilepsia 46 (2005) 140 (https://doi.org/10.1111/j.1528-1167.2005.00326.x)

S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H. Tanaka, Y. Sasaki, J. Antibiot. 44 (1991) 113 (https://doi.org/10.7164/antibiotics.44.113)

R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman, P. R. Jensen, W. Fenical, Angew. Chem. Int. Ed. 42 (2003) 355 (https://doi.org/10.1002/anie.200390115)

Y. Asami, H. Kakeya, R. Onose, A. Yoshida, H. Matsuzaki, H. Osada, Org. Lett. 4 (2002) 2845 (https://doi.org/10.1021/ol020104+)

M. S. F. Franco, G. A. Casagrande, C. Raminelli, S. Moura, M. Rossatto, F. H. Quina, C. M. P. Pereira, A. F. C. Flores, L. Pizzuti, Synth. Commun. 45 (2015) 692 (https://doi.org/10.1080/00397911.2014.978504)

M. Andana, S. I. Hashimoto, Tetrahedron Lett. 39 (1998) 79 (https://doi.org/10.1016/S0040-4039(97)10493-2)

D. R. Choi, K. Y. Lee, Y. S. Chung, J. E. Joo, Y. H. Kim, Ch. Y. Oh, Y. S. Lee, W. H. Ham, Arch. Pharm. Res. 28 (2005) 151 (https://doi.org/10.1007/bf02977706)

L. E. Burgess, A. I. Meyers, J. Org. Chem. 57 (1992) 1656 (https://doi.org/10.1021/jo00032a012)

L. E. Overman, T. P. Remarchuk, J. Am. Chem. Soc. 124 (2002) 12 (https://doi.org/10.1021/ja017198n)

V. Singh, R. Saxena, S. Batra, J. Org. Chem. 70 (2005) 353 (https://doi.org/10.1021/jo048411b)

R. Sarkar, C. Mukhopadhyay, Tetrahedron Lett. 54 (2013) 3706 (https://doi.org/10.1016/j.tetlet.2013.05.017)

A. M. Zonouz, I. Eskandari, B. Notash, Synth. Commun. 45 (2015) 2115 (https://doi.org/10.1080/00397911.2015.1065506)

H. Ahankar, A. Ramazani, K. Slepokura, T. Lis, S. W. Joo, Green Chem. 18 (2016) 3582 (https://doi.org/10.1039/c6gc00157b)

K. S. Marapala, N. Venkatesh, M. Swapna, P. R. Venkateswar, Int. J. ChemTech Res. 13 (2020) 227 (https://doi.org/10.20902/ijctr.2019.130128)

a) S. Pervaram, D. Ashok, C. Venkata Ramana Reddy, M. Sarasija, A. Ganesh, Chem. Data Coll. 29 (2020) 100508 (https://doi.org/10.1016/j.cdc.2020.100508) b) N. Ghaffari Khaligh, T. Mihankhah, M. Rafie Johan, S. J. J. Titinchi, Green Process Synth. 8 (2019) 373 (https://doi.org/10.1515/gps-2019-0004) c) N. Ghaffari Khaligh, T. Mihankhah, M. Rafie Johan, Synth. Commun. 49 (2019) 1334 (https://doi.org/10.1080/00397911.2019.1601225)

R. Ghorbani-Vaghei, N. Sarmast, J. Mahmoodi, J. Appl. Organomet. Chem. 31 (2017) e3681 (https://doi.org/10.1002/aoc.3681)

D. Setamdideh, J. Mex. Chem. Soc. 59 (2015) 191 (https://doi.org/10.29356/jmcs.v59i3.34)

Z. Zhang, J. Kong, J. Haz. Mater. 193 (2011) 325 (https://doi.org/10.1016/j.jhazmat.2011.07.033)

G. Nabiyouni, M. Julaee, D. Ghanbari, P. C. Aliabadi, and N. Safaie, J. Ind. Eng. Chem. 21 (2015) 599 (https://doi.org/10.1016/j.jiec.2014.03.025)

A. B. Savić, D. Cokesa, S. Lazarević, B. Jokić, D. Janaćković, R. Petrović, L. S. Živković, Powder Technol. 301(2016) 511 (https://doi.org/10.1016/j.powtec.2016.06.028)

D. V. Quy, N. M. Hieu, P. T. Tra, N. H. Nam, N. H. Hai, N. T. Son, P. T. Nghia, N. T. V. Anh, T. T. Hong, N. H. Luong, J. Nanomaterials, 2013, Article ID 603940 (http://doi.org/10.1155/2013/603940)

T. Koutzarova, S. Kolev, C. Ghelev, D. Paneva, I. Nedkov, Phys. Status Solidi, C 3 (2006) 1302 (https://doi.org/10.1002/pssc.200563115)

M. F. Tai, C. W. Lai, S. B. Abdul Hamid, J. Nanomater, 2016, Article ID 8612505 (https://doi.org/10.1155/2016/8612505)

K. S. Loh, Y. H. Lee, A. Musa, A. A. Salmah, I. Zamri, Sensors 8 (2008) 5775 (https://doi.org/10.3390/s8095775).