Fulleropyrrolidines with orthogonally flexible substituents – Synthesis and electrochemical properties Scientific paper

Main Article Content

Dragana Jovanović
Jovana Stanojković
Dženeta Halilović
Rejhana Kolašinac
Tatjana Kop
Mira Bjelaković
Dragana Milić


A large series of disubstituted fulleropyrrolidines was synthesized and analyzed by cyclic voltammetry. The three main groups of target com­pounds differ by a flexible N-chain, while their further diversity was achieved by the introduction of various rigid, aryl substituents at the pyrrolidine carbon. Some dialkyl analogues were also designed for comparison, A standard [3+2]-cycloaddition of in situ generated azomethine ylides to C60 afforded a variety of disubstituted fulleropyrrolidines. Furthermore, a set of dumbbell-shaped di(fulleropyrrolidine) derivatives containing rigid fumaryl or isophthaloyl diamide platform was prepared with the aim of investigating a long-range effect of the second fulleropyrrolidine moiety on their electrochemical pro­perties. All compounds were fully characterized by comparative analysis of spectral data, while examination of electrochemical properties was performed on representative samples, distinguished by main structural subunits. All com­pounds expressed quite similar electron-accepting ability, lower than C60, but higher in comparison to structurally similar N-methylfulleropyrrolidine.

Article Details

How to Cite
D. Jovanović, “Fulleropyrrolidines with orthogonally flexible substituents – Synthesis and electrochemical properties: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 11, pp. 1023-1037, Nov. 2021.
Organic Chemistry


M. Prato, Michele Maggini, Acc. Chem. Res. 31 (1998) 519 (https://doi.org/10.1021/ar970210p)

N. Tagmatarchis, M. Prato, Synlett 6 (2003) 768 (http://dx.doi.org/10.1002/chin.200329261)

A. Mateo-Alonso, C. Sooambar, M. Prato, Org. Biomol. Chem. 4 (2006) 1629 (http://dx.doi.org/10.1039/b516948h)

B. I. Kharisov, O. V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Ind. Eng. Chem. Res. 48 (2009) 545 (http://dx.doi.org/10.1021/ie800602j)

R. Ganesamoorthy, G. Sathiyan, P. Sakthivel, Sol. Energy Mat. Sol., C 161 (2017) 102 (http://dx.doi.org/10.1016/j.solmat.2016.11.024)

M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 115 (1993) 9798 (https://doi.org/10.1021/ja00074a056)

M. Prato, M. Maggini, G. Scorrano, Synth. Met. 77 (1996) 89 (https://doi.org/10.1016/0379-6779(96)80065-8)

X. Zhang, M. Willems, C. S. Foote, Tetrahedron Lett. 34 (1993) 8187 (https://doi.org/10.1016/S0040-4039(00)61386-2)

S. H. Lim, D. W. Cho, P. S. Mariano, Heterocycles 93 (2016) 202 (https://doi.org/10.3987/COM-15-S(T)19)

M. Iyoda, F. Sultana, M. Komatsu, Chem. Lett. 24 (1995) 1133 (https://doi.org/10.1246/cl.1995.1133)

S-H. Wu, W-Q. Sun, D-W. Zhang, L-H. Shu, H-M. Wu, J-F. Xu, X-F. Lao, J. Chem. Soc., Perkin Trans. 1 (1998) 1733 (https://doi.org/10.1039/A705962K)

P. A. Troshin, A. S. Peregudov, D. Mühlbacher, R. N. Lyubovskaya, Eur. J. Org. Chem. (2005) 3064 (https://doi.org/10.1002/ejoc.200500048)

K-F. Liou, C-H. Cheng, Chem. Commun. (1996) 1423 (https://doi.org/10.1039/CC9960001423)

G. E. Lawson, A. Kitaygorodskiy, B. Ma, C. E. Bunker, Y-P. Sun, J. Chem. Soc., Chem. Commun. (1995) 2225 (https://doi.org/10.1039/C39950002225)

J-L. Shi, X-F. Zhang, H-J. Wang, F-B. Li, X-X. Zhong, C-X. Liu, L. Liu, C-Y. Liu, H-M. Qin, Y-S. Huang, J. Org. Chem. 81 (2016) 7662 (https://doi.org/10.1021/acs.joc.6b01389)

M. Zhang, H-J. Wang, F-B. Li, X-X. Zhong, Y-S. Huang, L. Liu, C-Y. Liu, A. M. Asiri, K. A. Alamry, J. Org. Chem. 82 (2017) 8617 (https://doi.org/10.1021/acs.joc.7b01507)

L. Gan, D. Zhou, C. Luo, H. Tan, C. Huang, M. Lü, J. Pan, Y. Wu, J. Org. Chem. 61 (1996) 1954 (https://doi.org/10.1021/jo951933u)

S-E. Zhu, X. Cheng, Y-J. Li, C-K. Mai, Y-S. Huang, G-W. Wang, R-F. Peng, B. Jin, S-J. Chu, Org. Biomol. Chem. 10 (2012) 8720 (https://doi.org/10.1039/c2ob26066b)

B. Jin, R-F. Peng, J. Shen, S-J. Chu, Tetrahedron Lett. 50 (2009) 5640 (https://doi.org/10.1016/j.tetlet.2009.07.097)

B. Jin, J. Shen, R. Peng, C. Chen, S. Chu, Eur. J. Org. Chem. (2014) 6252 (http://dx.doi.org/10.1002/ejoc.201402655)

S. Filippone, E. E. Maroto, Á. Martín-Domenech, M. Suarez, N. Martín, Nat. Chem. 1 (2009) 578 (http://dx.doi.org/10.1038/NCHEM.361)

E. E. Maroto, M. Izquierdo, S. Reboredo, J. Marco-Martínez, S. Filippone, N. Martín, Acc. Chem. Res. 47 (2014) 2660 (https://doi.org/10.1021/ar500201b)

J-L. Shi, F-B. Li, X-F. Zhang, J. Wu, H-Y. Zhang, J. Peng, C-X. Liu, L. Liu, P. Wu, J-X. Li, J. Org. Chem. 81 (2016) 1769 (https://doi.org/10.1021/acs.joc.5b02412)

K. Yoshimura, K. Sugawara, S. Sakumichi, K. Matsumoto, Y. Uetani, S. Hayase, T. Nokami, T. Itoh, Chem. Lett. 42 (2013) 1209 (https://doi.org/10.1246/cl.130506)

K. Matsumoto, K. Hashimoto, M. Kamo, Y. Uetani, S. Hayase, M. Kawatsura, T. Itoh, J. Mater. Chem. 20 (2010) 9226 (https://doi.org/10.1039/C0JM01565B)

M. Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso, J. Mater. Chem., A 2 (2014) 20889 (https://doi.org/10.1039/c4ta04857a)

M. Karakawa, T. Nagai, T. Irita, K. Adachi, Y. Ie, Y. Aso, J. Fluor. Chem. 144 (2012) 51 (https://doi.org/10.1016/j.jfluchem.2012.09.009)

M. Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso, RSC Adv. 7 (2017) 7122 (https://doi.org/10.1039/c6ra27661j)

Y. Liang, Y. Hao, X. Liu, L. Feng, M. Chen, Q. Tang, N. Chen, M. Tang, B. Sun, Y. Zhou, B. Song, Carbon 92 (2015) 185 (https://doi.org/10.1016/j.carbon.2015.04.011)

C. Dardonville, C. Fernandez-Fernandez, S-L. Gibbons, G. J. Ryan, N. Jagerovic, A. M. Gabilondo, J. J. Meana, L. F. Callado, Bioorg. Med. Chem. 14 (2006) 6570 (https://doi.org/10.1016/j.bmc.2006.06.007)

A. Mitrović, N.Todorović, A. Žekić, D. Stanković, Dragana Milić, Veselin Maslak, Eur. J. Org. Chem. (2013) 2188 (https://doi.org/10.1002/ejoc.201201631)

Erkang Fan, Zhongsheng Zhang, Wendy E. Minke, Zheng Hou, Christophe L. M. J. Verlinde, Wim G. J. Hol, J. Am. Chem. Soc. 122 (2000) 2663 (https://doi.org/10.1021/ja993388a)

K. Kordatos, T. Da Ros, S. Bosi, E. Vazquez, M. Bergamin, C. Cusan, F. Pellarini, V. Tomberli, B. Baiti, D. Pantarotto, V. Georgakilas, G. Spalluto, M. Prato, J. Org. Chem. 66 (2001) 4915 (https://doi.org/10.1021/jo015608k)

X. Zhang, X-D. Li, Chin. Chem. Lett. 25 (2014) 501 (http://dx.doi.org/10.1016/j.cclet.2013.11.050)

R-F. Peng, B. Jin, K. Cao, Y-J. Shu, S-J. Chu, Chin. J. Org. Chem. 27 (2007) 276 (http://sioc-journal.cn/Jwk_yjhx/EN/Y2007/V27/I02/276)

M. Nyerges, A. Virányi, W. Zhang, P. W. Groundwater, G. Blaskó, L. Tóke, Tetrahedron 60 (2004) 9937 (http://dx.doi.org/10.1016/j.tet.2004.08.026)

F. Ajamaa, T. M. F. Duarte, C. Bourgogne, M. Holler, P. W. Fowler, J-F. Nierengarten, Eur. J. Org. Chem. (2005) 3766 (http://dx.doi.org/10.1002/ejoc.200500315)

K. H. Le Ho, S. Campidelli, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 (2014) 025008 (6pp) (http://dx.doi.org/10.1088/2043-6262/5/2/025008)

E. Busseron, J-J. Cid, A. Wolf, G. Du, E. Moulin, G. Fuks, M. Maaloum, P. Polavarapu, A. Ruff, A-K. Saur, S. Ludwigs, N. Giuseppone, ACS Nano 9 (2015) 2760 (http://dx.doi.org/10.1021/nn506646m)

C-H. Andersson, L. Nyholm, H. Grennberg, Dalton Trans. 41 (2012) 2374 (https://doi.org/10.1039/C2DT12097F)

M. A. Lebedeva, T. W. Chamberlain, E. S. Davies, B. E. Thomas, M. Schröder, A. N. Khlobystov, Beilstein J. Org. Chem. 10 (2014) 332 (https://doi.org/10.3762/bjoc.10.31)

A. L. Balch, D. A. Costa, W. R. Fawcett, K. Winkler, J. Phys. Chem. 100 (1996) 4823 (https://doi.org/10.1021/jp953144m)

K. Fujiwara, K. Komatsu, Org. Lett. 4 (2002) 1039 (https://doi.org/10.1021/ol025630f)

Y. Murata, A. Han, K. Komatsu, Tetrahedron Lett. 44 (2003) 8199 (https://doi.org/10.1016/j.tetlet.2003.09.077)

K. Lee, H. Song, B. Kim, J. T. Park, S. Park, M-G. Choi, J. Am. Chem. Soc. 124 (2002) 2872 (https://doi.org/10.1021/ja017496k)

A. J. Bard, L. R. Faulkner, Electrochemical Methods – Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc, New York, 2001, p. 589 (ISBN: 978-0-471-04372-0).