Fulleropyrrolidines with orthogonally flexible substituents – Synthesis and electrochemical properties Scientific paper
Main Article Content
Abstract
A large series of disubstituted fulleropyrrolidines was synthesized and analyzed by cyclic voltammetry. The three main groups of target compounds differ by a flexible N-chain, while their further diversity was achieved by the introduction of various rigid, aryl substituents at the pyrrolidine carbon. Some dialkyl analogues were also designed for comparison, A standard [3+2]-cycloaddition of in situ generated azomethine ylides to C60 afforded a variety of disubstituted fulleropyrrolidines. Furthermore, a set of dumbbell-shaped di(fulleropyrrolidine) derivatives containing rigid fumaryl or isophthaloyl diamide platform was prepared with the aim of investigating a long-range effect of the second fulleropyrrolidine moiety on their electrochemical properties. All compounds were fully characterized by comparative analysis of spectral data, while examination of electrochemical properties was performed on representative samples, distinguished by main structural subunits. All compounds expressed quite similar electron-accepting ability, lower than C60, but higher in comparison to structurally similar N-methylfulleropyrrolidine.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Prato, Michele Maggini, Acc. Chem. Res. 31 (1998) 519 (https://doi.org/10.1021/ar970210p)
N. Tagmatarchis, M. Prato, Synlett 6 (2003) 768 (http://dx.doi.org/10.1002/chin.200329261)
A. Mateo-Alonso, C. Sooambar, M. Prato, Org. Biomol. Chem. 4 (2006) 1629 (http://dx.doi.org/10.1039/b516948h)
B. I. Kharisov, O. V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Ind. Eng. Chem. Res. 48 (2009) 545 (http://dx.doi.org/10.1021/ie800602j)
R. Ganesamoorthy, G. Sathiyan, P. Sakthivel, Sol. Energy Mat. Sol., C 161 (2017) 102 (http://dx.doi.org/10.1016/j.solmat.2016.11.024)
M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 115 (1993) 9798 (https://doi.org/10.1021/ja00074a056)
M. Prato, M. Maggini, G. Scorrano, Synth. Met. 77 (1996) 89 (https://doi.org/10.1016/0379-6779(96)80065-8)
X. Zhang, M. Willems, C. S. Foote, Tetrahedron Lett. 34 (1993) 8187 (https://doi.org/10.1016/S0040-4039(00)61386-2)
S. H. Lim, D. W. Cho, P. S. Mariano, Heterocycles 93 (2016) 202 (https://doi.org/10.3987/COM-15-S(T)19)
M. Iyoda, F. Sultana, M. Komatsu, Chem. Lett. 24 (1995) 1133 (https://doi.org/10.1246/cl.1995.1133)
S-H. Wu, W-Q. Sun, D-W. Zhang, L-H. Shu, H-M. Wu, J-F. Xu, X-F. Lao, J. Chem. Soc., Perkin Trans. 1 (1998) 1733 (https://doi.org/10.1039/A705962K)
P. A. Troshin, A. S. Peregudov, D. Mühlbacher, R. N. Lyubovskaya, Eur. J. Org. Chem. (2005) 3064 (https://doi.org/10.1002/ejoc.200500048)
K-F. Liou, C-H. Cheng, Chem. Commun. (1996) 1423 (https://doi.org/10.1039/CC9960001423)
G. E. Lawson, A. Kitaygorodskiy, B. Ma, C. E. Bunker, Y-P. Sun, J. Chem. Soc., Chem. Commun. (1995) 2225 (https://doi.org/10.1039/C39950002225)
J-L. Shi, X-F. Zhang, H-J. Wang, F-B. Li, X-X. Zhong, C-X. Liu, L. Liu, C-Y. Liu, H-M. Qin, Y-S. Huang, J. Org. Chem. 81 (2016) 7662 (https://doi.org/10.1021/acs.joc.6b01389)
M. Zhang, H-J. Wang, F-B. Li, X-X. Zhong, Y-S. Huang, L. Liu, C-Y. Liu, A. M. Asiri, K. A. Alamry, J. Org. Chem. 82 (2017) 8617 (https://doi.org/10.1021/acs.joc.7b01507)
L. Gan, D. Zhou, C. Luo, H. Tan, C. Huang, M. Lü, J. Pan, Y. Wu, J. Org. Chem. 61 (1996) 1954 (https://doi.org/10.1021/jo951933u)
S-E. Zhu, X. Cheng, Y-J. Li, C-K. Mai, Y-S. Huang, G-W. Wang, R-F. Peng, B. Jin, S-J. Chu, Org. Biomol. Chem. 10 (2012) 8720 (https://doi.org/10.1039/c2ob26066b)
B. Jin, R-F. Peng, J. Shen, S-J. Chu, Tetrahedron Lett. 50 (2009) 5640 (https://doi.org/10.1016/j.tetlet.2009.07.097)
B. Jin, J. Shen, R. Peng, C. Chen, S. Chu, Eur. J. Org. Chem. (2014) 6252 (http://dx.doi.org/10.1002/ejoc.201402655)
S. Filippone, E. E. Maroto, Á. Martín-Domenech, M. Suarez, N. Martín, Nat. Chem. 1 (2009) 578 (http://dx.doi.org/10.1038/NCHEM.361)
E. E. Maroto, M. Izquierdo, S. Reboredo, J. Marco-Martínez, S. Filippone, N. Martín, Acc. Chem. Res. 47 (2014) 2660 (https://doi.org/10.1021/ar500201b)
J-L. Shi, F-B. Li, X-F. Zhang, J. Wu, H-Y. Zhang, J. Peng, C-X. Liu, L. Liu, P. Wu, J-X. Li, J. Org. Chem. 81 (2016) 1769 (https://doi.org/10.1021/acs.joc.5b02412)
K. Yoshimura, K. Sugawara, S. Sakumichi, K. Matsumoto, Y. Uetani, S. Hayase, T. Nokami, T. Itoh, Chem. Lett. 42 (2013) 1209 (https://doi.org/10.1246/cl.130506)
K. Matsumoto, K. Hashimoto, M. Kamo, Y. Uetani, S. Hayase, M. Kawatsura, T. Itoh, J. Mater. Chem. 20 (2010) 9226 (https://doi.org/10.1039/C0JM01565B)
M. Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso, J. Mater. Chem., A 2 (2014) 20889 (https://doi.org/10.1039/c4ta04857a)
M. Karakawa, T. Nagai, T. Irita, K. Adachi, Y. Ie, Y. Aso, J. Fluor. Chem. 144 (2012) 51 (https://doi.org/10.1016/j.jfluchem.2012.09.009)
M. Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso, RSC Adv. 7 (2017) 7122 (https://doi.org/10.1039/c6ra27661j)
Y. Liang, Y. Hao, X. Liu, L. Feng, M. Chen, Q. Tang, N. Chen, M. Tang, B. Sun, Y. Zhou, B. Song, Carbon 92 (2015) 185 (https://doi.org/10.1016/j.carbon.2015.04.011)
C. Dardonville, C. Fernandez-Fernandez, S-L. Gibbons, G. J. Ryan, N. Jagerovic, A. M. Gabilondo, J. J. Meana, L. F. Callado, Bioorg. Med. Chem. 14 (2006) 6570 (https://doi.org/10.1016/j.bmc.2006.06.007)
A. Mitrović, N.Todorović, A. Žekić, D. Stanković, Dragana Milić, Veselin Maslak, Eur. J. Org. Chem. (2013) 2188 (https://doi.org/10.1002/ejoc.201201631)
Erkang Fan, Zhongsheng Zhang, Wendy E. Minke, Zheng Hou, Christophe L. M. J. Verlinde, Wim G. J. Hol, J. Am. Chem. Soc. 122 (2000) 2663 (https://doi.org/10.1021/ja993388a)
K. Kordatos, T. Da Ros, S. Bosi, E. Vazquez, M. Bergamin, C. Cusan, F. Pellarini, V. Tomberli, B. Baiti, D. Pantarotto, V. Georgakilas, G. Spalluto, M. Prato, J. Org. Chem. 66 (2001) 4915 (https://doi.org/10.1021/jo015608k)
X. Zhang, X-D. Li, Chin. Chem. Lett. 25 (2014) 501 (http://dx.doi.org/10.1016/j.cclet.2013.11.050)
R-F. Peng, B. Jin, K. Cao, Y-J. Shu, S-J. Chu, Chin. J. Org. Chem. 27 (2007) 276 (http://sioc-journal.cn/Jwk_yjhx/EN/Y2007/V27/I02/276)
M. Nyerges, A. Virányi, W. Zhang, P. W. Groundwater, G. Blaskó, L. Tóke, Tetrahedron 60 (2004) 9937 (http://dx.doi.org/10.1016/j.tet.2004.08.026)
F. Ajamaa, T. M. F. Duarte, C. Bourgogne, M. Holler, P. W. Fowler, J-F. Nierengarten, Eur. J. Org. Chem. (2005) 3766 (http://dx.doi.org/10.1002/ejoc.200500315)
K. H. Le Ho, S. Campidelli, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 (2014) 025008 (6pp) (http://dx.doi.org/10.1088/2043-6262/5/2/025008)
E. Busseron, J-J. Cid, A. Wolf, G. Du, E. Moulin, G. Fuks, M. Maaloum, P. Polavarapu, A. Ruff, A-K. Saur, S. Ludwigs, N. Giuseppone, ACS Nano 9 (2015) 2760 (http://dx.doi.org/10.1021/nn506646m)
C-H. Andersson, L. Nyholm, H. Grennberg, Dalton Trans. 41 (2012) 2374 (https://doi.org/10.1039/C2DT12097F)
M. A. Lebedeva, T. W. Chamberlain, E. S. Davies, B. E. Thomas, M. Schröder, A. N. Khlobystov, Beilstein J. Org. Chem. 10 (2014) 332 (https://doi.org/10.3762/bjoc.10.31)
A. L. Balch, D. A. Costa, W. R. Fawcett, K. Winkler, J. Phys. Chem. 100 (1996) 4823 (https://doi.org/10.1021/jp953144m)
K. Fujiwara, K. Komatsu, Org. Lett. 4 (2002) 1039 (https://doi.org/10.1021/ol025630f)
Y. Murata, A. Han, K. Komatsu, Tetrahedron Lett. 44 (2003) 8199 (https://doi.org/10.1016/j.tetlet.2003.09.077)
K. Lee, H. Song, B. Kim, J. T. Park, S. Park, M-G. Choi, J. Am. Chem. Soc. 124 (2002) 2872 (https://doi.org/10.1021/ja017496k)
A. J. Bard, L. R. Faulkner, Electrochemical Methods – Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc, New York, 2001, p. 589 (ISBN: 978-0-471-04372-0).