Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1 Scientific paper

Main Article Content

Gheorghita Menghiu
https://orcid.org/0000-0002-6523-5738
Radivoje Prodanović
https://orcid.org/0000-0003-4662-1825
Marija Blažić
https://orcid.org/0000-0003-0857-1708
Manuela Mincea
Cristina Moraru
https://orcid.org/0000-0001-6202-8736
Vasile Ostafe
https://orcid.org/0000-0003-1352-1115

Abstract

Chitinases are glycosyl hydrolases, that cleave the β-1,4 linkage between N-acetyl glucosamines present in chitin chains. Chitin is the second most abundant polysaccharide on Earth after cellulose, and it is produced in the exoskeleton of crustaceans and insects, and in some parts of the cell walls of fungi. Enzymatic development and the extraction of superior derivatives from chitin wastes – such as chitooligosaccharides with vast importance in the medi­cal and biofuels industry – lead to the necessity of creating chitinases using dif­ferent strains of organisms. In this paper, the chiA gene from the Bacillus lich­eniformis DSM8785 encoding chitinase A (ChiA) with C-terminal hexahis­tid­ine tag was cloned and expressed in the extracellular expression system pYES2 from Saccharomyces cerevisiae INVSc1 as a hyperglycosylated enzyme. The production of recombinant ChiA was successfully confirmed by dot blotting, using anti-His antibodies. The optimal time of expression was identified to be 24 h when galactose was added only at the beginning of fermentation, the chit­in­ase activity starting to decrease after this threshold. Nevertheless, in another experiment, when galactose was added every 24 h for 72 h, the expression con­tinued for the entire period. The purified enzyme was detected, using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), as a het­ero­geneous diffuse band between 80 and 180 kDa. The molecular mass of the same ChiA enzyme expressed in Pichia pastoris KM71H and Escherichia coli BL21 (DE3) was compared using SDS-PAGE with ChiA expressed in S. cere­visiae INVSc1. The activity of ChiA was determined using the fluorogenic substrate, 4-methylumbelliferyl β-d-N,N,N-triacetylchitotrioside (4MUTC). Using a bioinformatics simulation, the number of the glycolsylation sites of the ChiA gene sequence and the proximity of these sites to the alpha factor sequ­ence were hypothesized to be a possible reason for which ChiA enzyme was internally expressed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
G. Menghiu, R. Prodanović, M. Blažić, M. Mincea, C. Moraru, and V. Ostafe, “Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 6, pp. 677–692, Apr. 2022.
Section
Biochemistry & Biotechnology

Funding data

References

P. Jolles, R. A. A. Muzzarelli, Chitin and Chitinases, Birkhäuser Basel, Basel, 1999

Y. M. Stoykov, A. Pavlov, A. Krastanov, Eng. Life Sci. 15 (2015) 30 (https://doi.org/10.1002/elsc.201400173)

R. K. Bretthauer, F. J. Castellino, Biotechnol. Appl. Biochem. 30 (1999) 193 (https://doi.org/10.1111/j.1470-8744.1999.tb00770.x)

O. W. Rossanese, J. Soderholm, B. J. Bevis, I. B. Sears, J. O'Connor, E. K. Williamson, B. S. Glick, J. Cell Biol. 145 (1999) 69 (https://doi.org/10.1083/jcb.145.1.69)

B. Huang, J. Guo, B. Yi, X. Yu, L. Sun, W. Chen, Biotechnol. Lett. 30 (2008) 1121 (https://doi.org/10.1007/s10529-008-9663-z)

H. Kim, S. J. Yoo, H. A. Kang, FEMS Yeast Res. 15 (2015) 1 (https://doi.org/10.1111/1567-1364.12195)

R. Mokdad-Gargouri, S. Abdelmoula-Soussi, N. Hadiji-Abbes, I. Y. Amor, I. Borchani-

-Chabchoub, A. Gargouri, Methods Mol. Biol. 824 (2012) 359 (https://doi.org/10.1007/978-1-61779-433-9_18)

G. Menghiu, V. Ostafe, R. Prodanovic, R. Fischer, R. Ostafe, Protein Expression Purif. 154 (2019) 25 (https://doi.org/10.1016/j.pep.2018.09.007)

H. Miller, D. S. Witherow, S. Carson, Molecular Biology Techniques: A Classroom L-aboratory Manual, Academic Press, Boston, MA, 2011, pp. 35–40 (ISBN 9780123855459)

F. Sanger, S. Nicklen, A. R. Coulson, Proc. Natl. Acad. Sci. U.S.A. 74 (1977) 5463 (https://doi.org/10.1073/pnas.74.12.5463)

D. R. Gietz, R. A. Woods, Methods Enzymology, Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method, Academic Press, New York, 2002, pp. 87–96 (https://doi.org/10.1016/S0076-6879(02)50957-5)

G. R. Grimsley, C. N. Pace, Curr. Protoc. Protein Sci. 33(2003 3.1.1- (https://doi.org/10.1002/0471140864.ps0301s33)

U. K. Laemmli, Nature 227 (1970) 680 (https://doi.org/10.1038/227680a0)

R. Gupta, S. Brunak, Pac. Symp. Biocomput. (2002) 310 (https://pubmed.ncbi.nlm.nih.gov/11928486/)

L. T. Invitrogen: pPICZalpha A, B, and C, Pichia expression vectors for selection on zeocin™ and purification of secreted, recombinant proteins, Cat. no. V195-20, MAN0000035. In User Manual, 2010 (https://www.fishersci.ca/shop/products/invitrogen-ppicz-a-b-c-i-pichia-i-vectors/v19520)

A. J. Brak,, J. P. Merryweather, D. G. Coit, U. A. Heberlein, F. R. Masiarz, G. T. Mullenbach, M. S. Urdea, P. Valenzuela, P. J. Barr, Proc. Natl. Acad. Sci. U.S.A. 81 (1984) 4642 (https://doi.org/10.1073/pnas.81.15.4642)

M. R. Wilkins, E. Gasteiger, A. Bairoch, J. C. Sanchez, K. L. Williams, R. D. Appel, D. F. Hochstrasser, Methods Mol. Biol. 112 (1999) 531 (https://doi.org/10.1385/1-59259-584-7:531)

J. U. Correa, N. Elango, I. Polacheck, E. Cabib, J. Biol. Chem. 257 (1982) 1392 (https://doi.org/10.1016/S0021-9258(19)68204-9)

N. Elango, J. U. Correa, E. Cabib, J. Biol. Chem. 257 (1982) 1398 (https://doi.org/10.1016/S0021-9258(19)68205-0)

M. Vilaj, G. Lauc, I. Trbojević-Akmačić, Glycobiology (2020) (https://doi.org/10.1093/glycob/cwaa047)

M. J. Kuranda, P. W. Robbins, J. Biol. Chem. 266 (1991) 19758 (https://doi.org/10.1016/S0021-9258(18)55057-2)

E. Celińska, M. Borkowska, W. Białas, Appl. Microbiol. Biotechnol. 100 (2016) 2693 (https://doi.org/10.1007/s00253-015-7098-8)

A. Mori, S. Hara, T. Sugahara, T. Kojima, Y. Iwasaki, Y. Kawarasaki, T. Sahara, S. Ohgiya, H. Nakano, J. Biosci. Bioeng. 120 (2015) 518 (https://doi.org/10.1016/j.jbiosc.2015.03.003)

C. Songsiriritthigul, S. Lapboonrueng, P. Pechsrichuang, P. Pesatcha, M. Yamabhai, Biores. Technol. 101 (2010) 4096 (http://dx.doi.org/10.1016/j.biortech.2010.01.036)

L. L. Kiiskinen, M. Saloheimo, Appl. Environ. Microbiol. 70 (2004) 137 (https://doi.org/10.1128/AEM.70.1.137-144.2004)

H. Aoyagi, Y. Katakura, A. Iwasaki, Springer Plus 5 (2016) 160 (https://doi.org/10.1186/s40064-016-1806-4)

R. Akiyama, S. Kajiwara, K. Shishido, Biosci. Biotechnol. Biochem. 68 (2004) 79 (https://doi.org/10.1271/bbb.68.79)

Y. Tang, J. Xiao, Y. Chen, Y. Yu, X. Xiao, Y. Yu, H. Wu, Microbiol. Res. 168 (2013) 6 (https://doi.org/10.1016/j.micres.2012.08.002)

C. Bao, J. Li, H. Chen, Y. Sun, G. Wang, G. Chen, S. Zhang, Sci. Rep. 10 (2020) 11686 (https://doi.org/10.1038/s41598-020-68570-6)

Z. Chen, Z. Li, N. Yu, L. Yan, Biotechnol. Lett. 33 (2010) 721 (https://doi.org/10.1007/s10529-010-0479-2)

L. Xia, Z. Liu, J. Ma, S. Sun, J. Yang, F. Zhang, Protein Expression Purif. 90 (2013) 47 (https://doi.org/10.1016/j.pep.2013.02.013)

M. Blažić, A. M. Balaž, V. Tadić, B. Draganić, R. Ostafe, R. Fischer, R. Prodanović, Biochem. Eng. J. 146 (2019) 179 (https://doi.org/10.1016/j.bej.2019.03.025).

Most read articles by the same author(s)