Reactions of copper(II) bromide with 2,6-diacetylpyridine bis(phenyl-hydrazone) (L) – Molecular and crystal structure of L and its mixed-valence complex [CuIIL2][CuI2Br4] Scientific paper

Main Article Content

Marko Rodić
https://orcid.org/0000-0002-4471-8001
Mirjana Radanović
https://orcid.org/0000-0001-6675-9763
Dragana Gazdić
https://orcid.org/0000-0001-8001-4725
Vukadin Leovac
Berta Barta Holló
https://orcid.org/0000-0002-5786-442X
Vidak Raičević
https://orcid.org/0000-0002-3858-4350
Svetlana Belošević
https://orcid.org/0000-0003-3555-054X
Biljana Krüger
https://orcid.org/0000-0003-2025-6460
Ljiljana Vojinović-Ješić
https://orcid.org/0000-0002-8618-7819

Abstract

Utilizing X-ray crystallography, the crystal and molecular structures of 2,6-diacetylpyridine bis(phenylhydrazone) (L) were determined. The ener­getics of the intermolecular interactions in the crystal structure were assessed with computational methods, revealing that dispersion interactions are domin­ant. The basic structural unit of the crystal packing was revealed to be the her­ring-bone type arrangement of L molecules. Assignation of the IR spectrum of L with the aid of DFT calculations was performed. Furthermore, new reactions of L with CuBr2 in different solvents are described, which led to the synthesis of the mixed Cu(II)–Cu(I) complex with the formula [CuIIL2][CuI2Br4] (1), and its structural characterization. In the complex cation, two molecules of triden­tate N3 ligand are meridionally arranged in a very distorted octahedral environ­ment of a Cu(II) ion. In [Cu2Br4]2-, the bromide ions are arranged in a trigonal-planar geometry around each copper(I) atom. Finally, for ligand, 1, and the previously synthesized com­plex [CuL2]Br2, the thermal properties were exam­ined. The thermal stability of the complexes were lower than that of the ligand and decrease in the order: L (250 °C) > [CuL2]Br2 (221 °C) > [CuIIL2][CuI2Br4] (212 °C). The differences in thermal stability of the com­plexes are due to differences in the packing efficacy of the constitutional ions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Rodić, “Reactions of copper(II) bromide with 2,6-diacetylpyridine bis(phenyl-hydrazone) (L) – Molecular and crystal structure of L and its mixed-valence complex [CuIIL2][CuI2Br4]: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 3, pp. 307–320, Feb. 2022.
Section
Inorganic Chemistry

References

D. G. Guimarães, L. A. Rolim, A. de A. Gonsalves, C. R. M. Araújo, Rev. Virtual Química 9 (2017) 2551 (https://dx.doi.org/10.21577/1984-6835.20170151)

C. Bonaccorso, T. Marzo, D. La Mendola, Pharmaceuticals 13 (2020) (https://dx.doi.org/10.3390/ph13010004)

S. Rollas, S. Küçükgüzel, S. Rollas, S. G. Küçükgüzel, Molecules 12 (2007) 1910 (https://dx.doi.org/10.3390/12081910)

M. M. E. Shakdofa, M. H. Shtaiwi, N. Morsy, T. M. A. Abdel-rassel, Main Gr. Chem. 13 (2014) 187 (https://dx.doi.org/10.3233/MGC-140133)

A.-M. Stadler, J. Harrowfield, Inorg. Chim. Acta 362 (2009) 4298 (https://dx.doi.org/10.1016/j.ica.2009.05.062)

M. Katyal, Y. Dutt, Talanta 22 (1975) 151 (https://dx.doi.org/10.1016/0039-9140(75)80161-5)

Y. P. Kitaev, Khimiya gidrazonov, Nauka, Moscow, 1977

Y. P. Kitaev, B. I. Buzykin, Gidrazony, Nauka, Moscow, 1974

I. D. Kostas, B. R. Steele, Catalysts 10 (2020) art. no. 1107 (https://dx.doi.org/10.3390/catal10101107)

V. V. Kogan, V.A., Zelentsov, V.V., Larin, G. M., Lukov, Kompleksy perekhodnykh metallov s gidrazonami, Nauka, Moscow, 1990

J. D. Curry, M. A. Robinson, D. H. Busch, Inorg. Chem. 6 (1967) 1570 (https://dx.doi.org/10.1021/ic50054a032)

I. Ivanović-Burmazović, K. Anđelković, in Advances in Inorganic Chemistry, R. van Eldik, Ed., Academic Press, Cambridge, MA, 2004, p. 315 (https://dx.doi.org/10.1016/S0898-8838(03)55006-1)

C. A. Brown, W. Kaminsky, K. A. Claborn, K. I. Goldberg, D. X. West, J. Braz. Chem. Soc. 13 (2002) 10 (https://dx.doi.org/10.1590/S0103-50532002000100003)

T. S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009) 977 (https://dx.doi.org/10.1016/J.CCR.2008.07.004)

S. Belošević, M. Rodić, M. Radanović, V. Leovac, Univ. Thought - Publ. Nat. Sci. 8 (2018) 33 (https://dx.doi.org/10.5937/UNIVTHO8-19451)

S. Belošević, M. M. Radanović, M. V. Rodić, V. M. Leovac, Bull. Nat. Sci. Res. 11 (2021) 24 (https://dx.doi.org/10.5937/BNSR11-30567)

Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Wroclaw, 2021

G. M. Sheldrick, Acta Crystallogr., A 71 (2015) 3 (https://dx.doi.org/10.1107/S2053273314026370)

G. M. Sheldrick, Acta Crystallogr., C 71 (2015) 3 (https://dx.doi.org/10.1107/S2053229614024218)

C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 44 (2011) 1281 (https://dx.doi.org/10.1107/S0021889811043202)

P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Crystallogr. 54 (2021) 1006 (https://dx.doi.org/10.1107/S1600576721002910)

C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 4 (2017) 575 (https://dx.doi.org/10.1107/S205225251700848X)

D. Jayatilaka, D. J. Grimwood, in Proceeding of International Conference on Computational Science, 2003, Melbourne, Australia and St. Petersburg, Russia, 2003 Proceedings, Part IV, Springer, 2003, p. 142 (https://dx.doi.org/10.1007/3-540-44864-0_15)

G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowal-ski, S. S. Leang, H. Li, W. Li, J.J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B.Q. Pham, P. Piecuch, D. Poole, S.R. Pruitt, A.P. Rendell, L.B. Roskop, K. Rueden-berg, T. Sattasathuchana, M.W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J.L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zaha-riev, M.S. Gordon, J. Chem. Phys. 152 (2020) 154102 (https://dx.doi.org/10.1063/5.0005188)

B. M. Bode, M. S. Gordon, J. Mol. Graph. Model. 16 (1998) 133 (https://dx.doi.org/10.1016/s1093-3263(99)00002-9)

W. J. Geary, Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)

L. S. Vojinović-Ješić, M. M. Radanović, Coordination chemistry of aminoguanidine and its Schiff bases, Faculty of Sciences, Novi Sad, 2017 (in Serbian)

H. Günzler, H.-U. Gremlich, IR‐Spektroskopie: Eine Einführung, Fourth Edition, John Wiley & Sons, Ltd., Weinheim, 2003, pp. 157–264 (https://dx.doi.org/10.1002/9783527662852.ch6)

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, Inc., Hoboken, NJ, 2008

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (https://dx.doi.org/10.1107/S2052520616003954)

W. Clegg, R. W. Harrington, CSD Commun., Database Identifier KEWWOB, Deposition Number 1836923 (2018) (https://dx.doi.org/10.5517/ccdc.csd.cc1znglp)

W. Radecka-Paryzek, M. Kubicki, E. Luks, Struct. Chem. 21 (2010) 299 (https://dx.doi.org/10.1007/s11224-009-9532-y)

C. Jelsch, K. Ejsmont, L. Huder, IUCrJ 1 (2014) 119 (https://dx.doi.org/10.1107/S2052252514003327)

F. Dumitru, Y.-M. Legrand, M. Barboiu, E. Petit, A. van der Lee, Cryst. Growth Des. 9 (2009) 2917 (https://dx.doi.org/10.1021/cg9002466).

Most read articles by the same author(s)