Reactions of copper(II) bromide with 2,6-diacetylpyridine bis(phenyl-hydrazone) (L) – Molecular and crystal structure of L and its mixed-valence complex [CuIIL2][CuI2Br4] Scientific paper
Main Article Content
Abstract
Utilizing X-ray crystallography, the crystal and molecular structures of 2,6-diacetylpyridine bis(phenylhydrazone) (L) were determined. The energetics of the intermolecular interactions in the crystal structure were assessed with computational methods, revealing that dispersion interactions are dominant. The basic structural unit of the crystal packing was revealed to be the herring-bone type arrangement of L molecules. Assignation of the IR spectrum of L with the aid of DFT calculations was performed. Furthermore, new reactions of L with CuBr2 in different solvents are described, which led to the synthesis of the mixed Cu(II)–Cu(I) complex with the formula [CuIIL2][CuI2Br4] (1), and its structural characterization. In the complex cation, two molecules of tridentate N3 ligand are meridionally arranged in a very distorted octahedral environment of a Cu(II) ion. In [Cu2Br4]2-, the bromide ions are arranged in a trigonal-planar geometry around each copper(I) atom. Finally, for ligand, 1, and the previously synthesized complex [CuL2]Br2, the thermal properties were examined. The thermal stability of the complexes were lower than that of the ligand and decrease in the order: L (250 °C) > [CuL2]Br2 (221 °C) > [CuIIL2][CuI2Br4] (212 °C). The differences in thermal stability of the complexes are due to differences in the packing efficacy of the constitutional ions.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
D. G. Guimarães, L. A. Rolim, A. de A. Gonsalves, C. R. M. Araújo, Rev. Virtual Química 9 (2017) 2551 (https://dx.doi.org/10.21577/1984-6835.20170151)
C. Bonaccorso, T. Marzo, D. La Mendola, Pharmaceuticals 13 (2020) (https://dx.doi.org/10.3390/ph13010004)
S. Rollas, S. Küçükgüzel, S. Rollas, S. G. Küçükgüzel, Molecules 12 (2007) 1910 (https://dx.doi.org/10.3390/12081910)
M. M. E. Shakdofa, M. H. Shtaiwi, N. Morsy, T. M. A. Abdel-rassel, Main Gr. Chem. 13 (2014) 187 (https://dx.doi.org/10.3233/MGC-140133)
A.-M. Stadler, J. Harrowfield, Inorg. Chim. Acta 362 (2009) 4298 (https://dx.doi.org/10.1016/j.ica.2009.05.062)
M. Katyal, Y. Dutt, Talanta 22 (1975) 151 (https://dx.doi.org/10.1016/0039-9140(75)80161-5)
Y. P. Kitaev, Khimiya gidrazonov, Nauka, Moscow, 1977
Y. P. Kitaev, B. I. Buzykin, Gidrazony, Nauka, Moscow, 1974
I. D. Kostas, B. R. Steele, Catalysts 10 (2020) art. no. 1107 (https://dx.doi.org/10.3390/catal10101107)
V. V. Kogan, V.A., Zelentsov, V.V., Larin, G. M., Lukov, Kompleksy perekhodnykh metallov s gidrazonami, Nauka, Moscow, 1990
J. D. Curry, M. A. Robinson, D. H. Busch, Inorg. Chem. 6 (1967) 1570 (https://dx.doi.org/10.1021/ic50054a032)
I. Ivanović-Burmazović, K. Anđelković, in Advances in Inorganic Chemistry, R. van Eldik, Ed., Academic Press, Cambridge, MA, 2004, p. 315 (https://dx.doi.org/10.1016/S0898-8838(03)55006-1)
C. A. Brown, W. Kaminsky, K. A. Claborn, K. I. Goldberg, D. X. West, J. Braz. Chem. Soc. 13 (2002) 10 (https://dx.doi.org/10.1590/S0103-50532002000100003)
T. S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009) 977 (https://dx.doi.org/10.1016/J.CCR.2008.07.004)
S. Belošević, M. Rodić, M. Radanović, V. Leovac, Univ. Thought - Publ. Nat. Sci. 8 (2018) 33 (https://dx.doi.org/10.5937/UNIVTHO8-19451)
S. Belošević, M. M. Radanović, M. V. Rodić, V. M. Leovac, Bull. Nat. Sci. Res. 11 (2021) 24 (https://dx.doi.org/10.5937/BNSR11-30567)
Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Wroclaw, 2021
G. M. Sheldrick, Acta Crystallogr., A 71 (2015) 3 (https://dx.doi.org/10.1107/S2053273314026370)
G. M. Sheldrick, Acta Crystallogr., C 71 (2015) 3 (https://dx.doi.org/10.1107/S2053229614024218)
C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 44 (2011) 1281 (https://dx.doi.org/10.1107/S0021889811043202)
P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Crystallogr. 54 (2021) 1006 (https://dx.doi.org/10.1107/S1600576721002910)
C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 4 (2017) 575 (https://dx.doi.org/10.1107/S205225251700848X)
D. Jayatilaka, D. J. Grimwood, in Proceeding of International Conference on Computational Science, 2003, Melbourne, Australia and St. Petersburg, Russia, 2003 Proceedings, Part IV, Springer, 2003, p. 142 (https://dx.doi.org/10.1007/3-540-44864-0_15)
G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowal-ski, S. S. Leang, H. Li, W. Li, J.J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B.Q. Pham, P. Piecuch, D. Poole, S.R. Pruitt, A.P. Rendell, L.B. Roskop, K. Rueden-berg, T. Sattasathuchana, M.W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J.L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zaha-riev, M.S. Gordon, J. Chem. Phys. 152 (2020) 154102 (https://dx.doi.org/10.1063/5.0005188)
B. M. Bode, M. S. Gordon, J. Mol. Graph. Model. 16 (1998) 133 (https://dx.doi.org/10.1016/s1093-3263(99)00002-9)
W. J. Geary, Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)
L. S. Vojinović-Ješić, M. M. Radanović, Coordination chemistry of aminoguanidine and its Schiff bases, Faculty of Sciences, Novi Sad, 2017 (in Serbian)
H. Günzler, H.-U. Gremlich, IR‐Spektroskopie: Eine Einführung, Fourth Edition, John Wiley & Sons, Ltd., Weinheim, 2003, pp. 157–264 (https://dx.doi.org/10.1002/9783527662852.ch6)
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, Inc., Hoboken, NJ, 2008
C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (https://dx.doi.org/10.1107/S2052520616003954)
W. Clegg, R. W. Harrington, CSD Commun., Database Identifier KEWWOB, Deposition Number 1836923 (2018) (https://dx.doi.org/10.5517/ccdc.csd.cc1znglp)
W. Radecka-Paryzek, M. Kubicki, E. Luks, Struct. Chem. 21 (2010) 299 (https://dx.doi.org/10.1007/s11224-009-9532-y)
C. Jelsch, K. Ejsmont, L. Huder, IUCrJ 1 (2014) 119 (https://dx.doi.org/10.1107/S2052252514003327)
F. Dumitru, Y.-M. Legrand, M. Barboiu, E. Petit, A. van der Lee, Cryst. Growth Des. 9 (2009) 2917 (https://dx.doi.org/10.1021/cg9002466).