Glycerol and malonic acid as corrosion inhibitors as seen through the density functional theory perspective Scientific paper

Main Article Content

Luis Diaz-Ballote
Luis Maldonado-López
Liliana San-Pedro
Emanuel Hernández-Nuñez
Juan Genesca


Glycerol (G) is the major co-product in the transesteri­fication process of biodiesel. As clean energy demand increases, the production of G also inc­reases and new ways of re-using it are needed. In the last decade, some exp­eri­mental studies claimed that G and its derivative, malonic acid (MA), could be used as corrosion inhibitors. Yet, presently, there is little evidence of it and more studies are needed to confirm that G and MA could have a good perform­ance in metal protection. The present work aims to study the reactivity of G and MA, since reactivity and inhibition are intimately linked. The density func­tional theory (DFT) at the B3YLP/6-31G** level of theory was used to study the reactivity of both molecules. The global and local quantum para­meters derived were used to assess the reactivity of both molecules. Analysis of the cal­cul­ated reactivity descriptors suggest that G and MA should exhibit an accept­able corrosion efficiency, but MA showed have a greater potential as a corrosion inhibitor.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
L. Diaz-Ballote, L. Maldonado-López, L. San-Pedro, E. Hernández-Nuñez, and J. . Genesca, “Glycerol and malonic acid as corrosion inhibitors as seen through the density functional theory perspective: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 7-8, pp. 845–856, Mar. 2022.
Theoretical Chemistry


S. A. N. M. Rahim, C. S. Lee, F. Abnisa, M. K. Aroua, W. A. W. Daud, P. Cognet, Y. Pérès, Sci. Total Environ. 705 (2020) 1 (

U.S. Energy Information Administration, (accessed August 30, 2021)

OECD-FAO Agricultural Outlook, (accessed August 30, 2021)

S. L. Chi-Ucán, A. Castillo-Atoche, P. Castro Borges, J. A. Manzanilla-Cano, G. González-García, R. Patiño, L. Díaz-Ballote, J. Chem. 2014 (2014) 1 (

V. Sivabalan, B. Walid, Y. Madec, A. Qasim, B. Lal, Malaysian J. Anal. Sci. 24 (2020) 62 (

A. Jayashree, F. R. Selvarani, J. W. Sahayaraj, A. J. Amalraj, S. Rajendran, Port. Electrochim. Acta 27 (2009) 23 (

P. S. S. Rajendran, Int. J. Sci. Res. 6 (2017) 2692

K. K. Sagoe-Crentsil, V. T. Yilmaz, F. P. Glasser, Cem. Concr. Res. 23 (1993) 1380 (

G. Gece, Corros. Sci. 50 (2008) 2981 (

I. B. Obot, D. D. Macdonald, Z. M. Gasem, Corros. Sci. 99 (2015) 1 (

D. K. Verma, Adv. Eng. Test. (2018) (

National Library of Medicine, (accessed August 30, 2021)

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, G. R. Hutchison, J. Cheminform. 4 (2012) 1 (

A.-R. Allouche, J. Comput. Chem. 32 (2011) 174 (

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (

M. Cossi, V. Barone, J. Chem. Phys. 109 (1998) 6246 (

G. Zhurko, D. Zhurko, (accessed August 27, 2021)

C. S. Callam, S. J. Singer, T. L. Lowary, C. M. Hadad, J. Am. Chem. Soc. 123 (2001) 11743 (

M. Merchán, F. Tomás, I. Nebot-Gil, J. Mol. Struct. THEOCHEM 109 (1984) 51 (

E. M. S. Maçôas, R. Fausto, J. Lundell, M. Pettersson, L. Khriachtchev, M. Räsänen, J. Phys. Chem. A 104 (2000) 11725 (

N. V. P. Rangel, L. P. da Silva, V. S. Pinheiro, I. M. Figueredo, O. S. Campos, S. N. Costa, F. M. T. Luna, C. L. Cavalcante, E. S. Marinho, P. de Lima-Neto, M. A. S. Rios, Fuel 289 (2021) (

J. Fang, J. Li, J. Mol. Struct. THEOCHEM 593 (2002) 179 (

N. F. El Boraei, S. A. Halim, M. A. M. Ibrahim, Anti-Corrosion Methods Mater. 65 (2018) 626 (

A. Zarrouk, B. Hammouti, A. Dafali, M. Bouachrine, H. Zarrok, S. Boukhris, S. S. Al-Deyab, J. Saudi Chem. Soc. 18 (2014) 450 (

A. M. Al-Sabagh, N. M. Nasser, A. A. Farag, M. A. Migahed, A. M. F. Eissa, T. Mahmoud, Egypt. J. Pet. 22 (2013) 101 (

R. Padash, M. Rahimi-Nasrabadi, A. Shokuhi Rad, A. Sobhani-Nasab, T. Jesionowski, H. Ehrlich, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1 (

A. Döner, R. Solmaz, M. Özcan, G. Kardaş, Corros. Sci. 53 (2011) 2902 (

T. Koopmans, Physica 1 (1934) 104 (

E. A. M. Gad, E. M. S. Azzam, S. A. Halim, Egypt. J. Pet. 27 (2018) 695 (

X. Liao, Y. Zhu, S. G. Wang, H. Chen, Y. Li, Appl. Catal., B 94 (2010) 64 (

L. E. Gómez-Pineda, C. M. Quiroa-Montalván, Rev. Mex. Ing. Quim. 15 (2016) 667 (

N. Ammouchi, H. Allal, Y. Belhocine, S. Bettaz, E. Zouaoui, J. Mol. Liq. 300 (2020) (

R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (

J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren, L. Yu, Corros. Sci. 53 (2011) 147 (

X. Cao, Chem. Phys. 311 (2005) 203 (

S. Thakur, S. M. Borah, N. C. Adhikary, Optik (Stuttg). 168 (2018) 228 (

A. H. Radhi, E. A. B. Du, F. A. Khazaal, Z. M. Abbas, O. H. Aljelawi, S. D. Hamadan, H. A. Almashhadani, M. M. Kadhim, NeuroQuantology 18 (2020) 37 (

R. Mejia-Urueta, F. Nuñez-Zarur, R. Vivas-Reyes, Int. J. Quantum Chem. 112 (2012) 2808–2815 (

E. F. Blanco-Acuña, L. Pérez-Hincapié, A. Pérez-Gamboa, G. Castellar-Ortega, M. Cely-Bautista, Rev. ION 31 (2019) 51 (