Glycerol and malonic acid as corrosion inhibitors as seen through the density functional theory perspective Scientific paper
Main Article Content
Abstract
Glycerol (G) is the major co-product in the transesterification process of biodiesel. As clean energy demand increases, the production of G also increases and new ways of re-using it are needed. In the last decade, some experimental studies claimed that G and its derivative, malonic acid (MA), could be used as corrosion inhibitors. Yet, presently, there is little evidence of it and more studies are needed to confirm that G and MA could have a good performance in metal protection. The present work aims to study the reactivity of G and MA, since reactivity and inhibition are intimately linked. The density functional theory (DFT) at the B3YLP/6-31G** level of theory was used to study the reactivity of both molecules. The global and local quantum parameters derived were used to assess the reactivity of both molecules. Analysis of the calculated reactivity descriptors suggest that G and MA should exhibit an acceptable corrosion efficiency, but MA showed have a greater potential as a corrosion inhibitor.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. A. N. M. Rahim, C. S. Lee, F. Abnisa, M. K. Aroua, W. A. W. Daud, P. Cognet, Y. Pérès, Sci. Total Environ. 705 (2020) 1 (http://dx.doi.org/10.1016/j.scitotenv.2019.135137)
U.S. Energy Information Administration, https://www.eia.gov/petroleum/reports.cfm (accessed August 30, 2021)
OECD-FAO Agricultural Outlook, https://stats.oecd.org/index.aspx?queryid=84952 (accessed August 30, 2021)
S. L. Chi-Ucán, A. Castillo-Atoche, P. Castro Borges, J. A. Manzanilla-Cano, G. González-García, R. Patiño, L. Díaz-Ballote, J. Chem. 2014 (2014) 1 (http://dx.doi.org/10.1155/2014/396405)
V. Sivabalan, B. Walid, Y. Madec, A. Qasim, B. Lal, Malaysian J. Anal. Sci. 24 (2020) 62 (https://mjas.analis.com.my/mjas/v24_n1/pdf/Sivabalan_24_1_7.pdf)
A. Jayashree, F. R. Selvarani, J. W. Sahayaraj, A. J. Amalraj, S. Rajendran, Port. Electrochim. Acta 27 (2009) 23 (http://dx.doi.org/10.4152/pea.200901023)
P. S. S. Rajendran, Int. J. Sci. Res. 6 (2017) 2692 https://www.ijsr.net/archive/v6i6/ART20174819.pdf.
K. K. Sagoe-Crentsil, V. T. Yilmaz, F. P. Glasser, Cem. Concr. Res. 23 (1993) 1380 (http://dx.doi.org/10.1016/0008-8846(93)90075-K)
G. Gece, Corros. Sci. 50 (2008) 2981 (http://dx.doi.org/10.1016/j.corsci.2008.08.043)
I. B. Obot, D. D. Macdonald, Z. M. Gasem, Corros. Sci. 99 (2015) 1 (http://dx.doi.org/10.1016/j.corsci.2015.01.037)
D. K. Verma, Adv. Eng. Test. (2018) (http://dx.doi.org/10.5772/intechopen.78333)
National Library of Medicine, https://pubchem.ncbi.nlm.nih.gov/ (accessed August 30, 2021)
M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, G. R. Hutchison, J. Cheminform. 4 (2012) 1 (http://dx.doi.org/10.1186/1758-2946-4-17)
A.-R. Allouche, J. Comput. Chem. 32 (2011) 174 (https://doi.org/10.1002/jcc.21600)
F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (https://dx.doi.org/10.1002/wcms.81)
M. Cossi, V. Barone, J. Chem. Phys. 109 (1998) 6246 (http://dx.doi.org/10.1063/1.47765)
G. Zhurko, D. Zhurko, http://www.chemcraft.com/ (accessed August 27, 2021)
C. S. Callam, S. J. Singer, T. L. Lowary, C. M. Hadad, J. Am. Chem. Soc. 123 (2001) 11743 (http://dx.doi.org/10.1021/ja011785r)
M. Merchán, F. Tomás, I. Nebot-Gil, J. Mol. Struct. THEOCHEM 109 (1984) 51 (http://dx.doi.org/10.1016/0166-1280(84)80134-7)
E. M. S. Maçôas, R. Fausto, J. Lundell, M. Pettersson, L. Khriachtchev, M. Räsänen, J. Phys. Chem. A 104 (2000) 11725 (http://dx.doi.org/10.1021/jp002853j)
N. V. P. Rangel, L. P. da Silva, V. S. Pinheiro, I. M. Figueredo, O. S. Campos, S. N. Costa, F. M. T. Luna, C. L. Cavalcante, E. S. Marinho, P. de Lima-Neto, M. A. S. Rios, Fuel 289 (2021) (http://dx.doi.org/10.1016/j.fuel.2020.119939)
J. Fang, J. Li, J. Mol. Struct. THEOCHEM 593 (2002) 179 (http://dx.doi.org/10.1016/S0166-1280(02)00316-0)
N. F. El Boraei, S. A. Halim, M. A. M. Ibrahim, Anti-Corrosion Methods Mater. 65 (2018) 626 (http://dx.doi.org/10.1108/ACMM-04-2018-1927)
A. Zarrouk, B. Hammouti, A. Dafali, M. Bouachrine, H. Zarrok, S. Boukhris, S. S. Al-Deyab, J. Saudi Chem. Soc. 18 (2014) 450 (http://dx.doi.org/10.1016/j.jscs.2011.09.011)
A. M. Al-Sabagh, N. M. Nasser, A. A. Farag, M. A. Migahed, A. M. F. Eissa, T. Mahmoud, Egypt. J. Pet. 22 (2013) 101 (http://dx.doi.org/10.1016/j.ejpe.2012.09.004)
R. Padash, M. Rahimi-Nasrabadi, A. Shokuhi Rad, A. Sobhani-Nasab, T. Jesionowski, H. Ehrlich, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1 (http://dx.doi.org/10.1007/s00339-018-2376-9)
A. Döner, R. Solmaz, M. Özcan, G. Kardaş, Corros. Sci. 53 (2011) 2902 (http://dx.doi.org/10.1016/j.corsci.2011.05.027)
T. Koopmans, Physica 1 (1934) 104 (http://dx.doi.org/10.1016/S0031-8914(34)90011-2)
E. A. M. Gad, E. M. S. Azzam, S. A. Halim, Egypt. J. Pet. 27 (2018) 695 (http://dx.doi.org/10.1016/j.ejpe.2017.10.005)
X. Liao, Y. Zhu, S. G. Wang, H. Chen, Y. Li, Appl. Catal., B 94 (2010) 64 (http://dx.doi.org/10.1016/j.apcatb.2009.10.021)
L. E. Gómez-Pineda, C. M. Quiroa-Montalván, Rev. Mex. Ing. Quim. 15 (2016) 667 (http://dx.doi.org/10.24275/rmiq/sc1244)
N. Ammouchi, H. Allal, Y. Belhocine, S. Bettaz, E. Zouaoui, J. Mol. Liq. 300 (2020) (http://dx.doi.org/10.1016/j.molliq.2019.112309)
R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (http://dx.doi.org/10.1021/ja983494x)
J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren, L. Yu, Corros. Sci. 53 (2011) 147 (http://dx.doi.org/10.1016/j.corsci.2010.09.007)
X. Cao, Chem. Phys. 311 (2005) 203 (http://dx.doi.org/10.1016/j.chemphys.2004.09.037)
S. Thakur, S. M. Borah, N. C. Adhikary, Optik (Stuttg). 168 (2018) 228 (http://dx.doi.org/10.1016/j.ijleo.2018.04.099)
A. H. Radhi, E. A. B. Du, F. A. Khazaal, Z. M. Abbas, O. H. Aljelawi, S. D. Hamadan, H. A. Almashhadani, M. M. Kadhim, NeuroQuantology 18 (2020) 37 (http://dx.doi.org/10.14704/nq.2020.18.1.NQ20105)
R. Mejia-Urueta, F. Nuñez-Zarur, R. Vivas-Reyes, Int. J. Quantum Chem. 112 (2012) 2808–2815 (http://dx.doi.org/10.1002/qua.24008)
E. F. Blanco-Acuña, L. Pérez-Hincapié, A. Pérez-Gamboa, G. Castellar-Ortega, M. Cely-Bautista, Rev. ION 31 (2019) 51 (http://dx.doi.org/10.18273/revion.v31n2-2018004).