Glycerol and malonic acid as corrosion inhibitors as seen through the density functional theory perspective Scientific paper

Main Article Content

Luis Diaz-Ballote
https://orcid.org/0000-0002-8632-8407
Luis Maldonado-López
https://orcid.org/0000-0003-3703-9825
Liliana San-Pedro
https://orcid.org/0000-0002-6533-6571
Emanuel Hernández-Nuñez
https://orcid.org/0000-0002-7467-7538
Juan Genesca
https://orcid.org/0000-0002-9096-9928

Abstract

Glycerol (G) is the major co-product in the transesteri­fication process of biodiesel. As clean energy demand increases, the production of G also inc­reases and new ways of re-using it are needed. In the last decade, some exp­eri­mental studies claimed that G and its derivative, malonic acid (MA), could be used as corrosion inhibitors. Yet, presently, there is little evidence of it and more studies are needed to confirm that G and MA could have a good perform­ance in metal protection. The present work aims to study the reactivity of G and MA, since reactivity and inhibition are intimately linked. The density func­tional theory (DFT) at the B3YLP/6-31G** level of theory was used to study the reactivity of both molecules. The global and local quantum para­meters derived were used to assess the reactivity of both molecules. Analysis of the cal­cul­ated reactivity descriptors suggest that G and MA should exhibit an accept­able corrosion efficiency, but MA showed have a greater potential as a corrosion inhibitor.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Diaz-Ballote, L. Maldonado-López, L. San-Pedro, E. Hernández-Nuñez, and J. . Genesca, “Glycerol and malonic acid as corrosion inhibitors as seen through the density functional theory perspective: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 7-8, pp. 845–856, Mar. 2022.
Section
Theoretical Chemistry

References

S. A. N. M. Rahim, C. S. Lee, F. Abnisa, M. K. Aroua, W. A. W. Daud, P. Cognet, Y. Pérès, Sci. Total Environ. 705 (2020) 1 (http://dx.doi.org/10.1016/j.scitotenv.2019.135137)

U.S. Energy Information Administration, https://www.eia.gov/petroleum/reports.cfm (accessed August 30, 2021)

OECD-FAO Agricultural Outlook, https://stats.oecd.org/index.aspx?queryid=84952 (accessed August 30, 2021)

S. L. Chi-Ucán, A. Castillo-Atoche, P. Castro Borges, J. A. Manzanilla-Cano, G. González-García, R. Patiño, L. Díaz-Ballote, J. Chem. 2014 (2014) 1 (http://dx.doi.org/10.1155/2014/396405)

V. Sivabalan, B. Walid, Y. Madec, A. Qasim, B. Lal, Malaysian J. Anal. Sci. 24 (2020) 62 (https://mjas.analis.com.my/mjas/v24_n1/pdf/Sivabalan_24_1_7.pdf)

A. Jayashree, F. R. Selvarani, J. W. Sahayaraj, A. J. Amalraj, S. Rajendran, Port. Electrochim. Acta 27 (2009) 23 (http://dx.doi.org/10.4152/pea.200901023)

P. S. S. Rajendran, Int. J. Sci. Res. 6 (2017) 2692 https://www.ijsr.net/archive/v6i6/ART20174819.pdf.

K. K. Sagoe-Crentsil, V. T. Yilmaz, F. P. Glasser, Cem. Concr. Res. 23 (1993) 1380 (http://dx.doi.org/10.1016/0008-8846(93)90075-K)

G. Gece, Corros. Sci. 50 (2008) 2981 (http://dx.doi.org/10.1016/j.corsci.2008.08.043)

I. B. Obot, D. D. Macdonald, Z. M. Gasem, Corros. Sci. 99 (2015) 1 (http://dx.doi.org/10.1016/j.corsci.2015.01.037)

D. K. Verma, Adv. Eng. Test. (2018) (http://dx.doi.org/10.5772/intechopen.78333)

National Library of Medicine, https://pubchem.ncbi.nlm.nih.gov/ (accessed August 30, 2021)

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, G. R. Hutchison, J. Cheminform. 4 (2012) 1 (http://dx.doi.org/10.1186/1758-2946-4-17)

A.-R. Allouche, J. Comput. Chem. 32 (2011) 174 (https://doi.org/10.1002/jcc.21600)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (https://dx.doi.org/10.1002/wcms.81)

M. Cossi, V. Barone, J. Chem. Phys. 109 (1998) 6246 (http://dx.doi.org/10.1063/1.47765)

G. Zhurko, D. Zhurko, http://www.chemcraft.com/ (accessed August 27, 2021)

C. S. Callam, S. J. Singer, T. L. Lowary, C. M. Hadad, J. Am. Chem. Soc. 123 (2001) 11743 (http://dx.doi.org/10.1021/ja011785r)

M. Merchán, F. Tomás, I. Nebot-Gil, J. Mol. Struct. THEOCHEM 109 (1984) 51 (http://dx.doi.org/10.1016/0166-1280(84)80134-7)

E. M. S. Maçôas, R. Fausto, J. Lundell, M. Pettersson, L. Khriachtchev, M. Räsänen, J. Phys. Chem. A 104 (2000) 11725 (http://dx.doi.org/10.1021/jp002853j)

N. V. P. Rangel, L. P. da Silva, V. S. Pinheiro, I. M. Figueredo, O. S. Campos, S. N. Costa, F. M. T. Luna, C. L. Cavalcante, E. S. Marinho, P. de Lima-Neto, M. A. S. Rios, Fuel 289 (2021) (http://dx.doi.org/10.1016/j.fuel.2020.119939)

J. Fang, J. Li, J. Mol. Struct. THEOCHEM 593 (2002) 179 (http://dx.doi.org/10.1016/S0166-1280(02)00316-0)

N. F. El Boraei, S. A. Halim, M. A. M. Ibrahim, Anti-Corrosion Methods Mater. 65 (2018) 626 (http://dx.doi.org/10.1108/ACMM-04-2018-1927)

A. Zarrouk, B. Hammouti, A. Dafali, M. Bouachrine, H. Zarrok, S. Boukhris, S. S. Al-Deyab, J. Saudi Chem. Soc. 18 (2014) 450 (http://dx.doi.org/10.1016/j.jscs.2011.09.011)

A. M. Al-Sabagh, N. M. Nasser, A. A. Farag, M. A. Migahed, A. M. F. Eissa, T. Mahmoud, Egypt. J. Pet. 22 (2013) 101 (http://dx.doi.org/10.1016/j.ejpe.2012.09.004)

R. Padash, M. Rahimi-Nasrabadi, A. Shokuhi Rad, A. Sobhani-Nasab, T. Jesionowski, H. Ehrlich, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1 (http://dx.doi.org/10.1007/s00339-018-2376-9)

A. Döner, R. Solmaz, M. Özcan, G. Kardaş, Corros. Sci. 53 (2011) 2902 (http://dx.doi.org/10.1016/j.corsci.2011.05.027)

T. Koopmans, Physica 1 (1934) 104 (http://dx.doi.org/10.1016/S0031-8914(34)90011-2)

E. A. M. Gad, E. M. S. Azzam, S. A. Halim, Egypt. J. Pet. 27 (2018) 695 (http://dx.doi.org/10.1016/j.ejpe.2017.10.005)

X. Liao, Y. Zhu, S. G. Wang, H. Chen, Y. Li, Appl. Catal., B 94 (2010) 64 (http://dx.doi.org/10.1016/j.apcatb.2009.10.021)

L. E. Gómez-Pineda, C. M. Quiroa-Montalván, Rev. Mex. Ing. Quim. 15 (2016) 667 (http://dx.doi.org/10.24275/rmiq/sc1244)

N. Ammouchi, H. Allal, Y. Belhocine, S. Bettaz, E. Zouaoui, J. Mol. Liq. 300 (2020) (http://dx.doi.org/10.1016/j.molliq.2019.112309)

R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (http://dx.doi.org/10.1021/ja983494x)

J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren, L. Yu, Corros. Sci. 53 (2011) 147 (http://dx.doi.org/10.1016/j.corsci.2010.09.007)

X. Cao, Chem. Phys. 311 (2005) 203 (http://dx.doi.org/10.1016/j.chemphys.2004.09.037)

S. Thakur, S. M. Borah, N. C. Adhikary, Optik (Stuttg). 168 (2018) 228 (http://dx.doi.org/10.1016/j.ijleo.2018.04.099)

A. H. Radhi, E. A. B. Du, F. A. Khazaal, Z. M. Abbas, O. H. Aljelawi, S. D. Hamadan, H. A. Almashhadani, M. M. Kadhim, NeuroQuantology 18 (2020) 37 (http://dx.doi.org/10.14704/nq.2020.18.1.NQ20105)

R. Mejia-Urueta, F. Nuñez-Zarur, R. Vivas-Reyes, Int. J. Quantum Chem. 112 (2012) 2808–2815 (http://dx.doi.org/10.1002/qua.24008)

E. F. Blanco-Acuña, L. Pérez-Hincapié, A. Pérez-Gamboa, G. Castellar-Ortega, M. Cely-Bautista, Rev. ION 31 (2019) 51 (http://dx.doi.org/10.18273/revion.v31n2-2018004).