Protein degradation induced by PROTAC molecules as an emerging drug discovery strategy Survey

Main Article Content

Mladen Koravović
https://orcid.org/0000-0002-0903-8086
Bojan Marković
https://orcid.org/0000-0002-3825-4394
Milena Kovačević
https://orcid.org/0000-0003-2957-7965
Milena Rmandić
Gordana Tasić
https://orcid.org/0000-0003-4784-9581

Abstract

The traditional concept of drug discovery is based on the occupancy-driven pharmacology model. It implies the development of inhibitors occupy­ing binding sites that directly affect protein functions. Therefore, proteins that do not have such binding sites are generally considered as pharmacologically intractable. Furthermore, drugs that act in this way must be administered in dosage regimens that often result in high systemic drug exposures in order to maintain sufficient protein inhibition. Thus, there is a risk of the onset of off-target binding and side effects. The landscape of drug discovery has been markedly changed since proteolysis targeting chimera (PROTAC) mole­cules emerged twenty years ago as a part of the event-driven pharmacology model. These are bifunctional molecules that harness the ubiquitin-proteasome system, and are composed of a ligand that binds the protein of interest (POI), a ligand that recruits E3 ubiquitin ligase (E3UL) and a linker that connects these two parts. Pharmacologically, PROTACs bring POI and E3UL into close prox­imity, which triggers the formation of a functional ternary complex POI–PROTAC–E3UL. This event drives polyubiquitination and subsequent POI degradation by the 26S proteasome. The development and except­ional pro­perties of PROTAC molecules that brought them to clinical studies will be discussed in this paper.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Koravović, B. Marković, M. Kovačević, M. Rmandić, and G. Tasić, “Protein degradation induced by PROTAC molecules as an emerging drug discovery strategy: Survey”, J. Serb. Chem. Soc., vol. 87, no. 7-8, pp. 785–811, May 2022.
Section
Organic Chemistry

Funding data

References

I. Churcher, J. Med. Chem. 61 (2018) 444 (http://dx.doi.org/10.1021/acs.jmedchem.7b01272)

L. E. Limbird, Mol. Interv. 4 (2004) 326 (http://dx.doi.org/10.1124/mi.4.6.6)

M. Benchekroun, Future Drug. Discov. 1 (2019) FDD16 (http://dx.doi.org/10.4155/fdd-2019-0019)

M. Rask-Andersen, M. S. Almén, H. B. Schiöth, Nat. Rev. Drug Discov. 10 (2011) 579 (http://dx.doi.org/10.1038/nrd3478)

T. K. Neklesa, J. D. Winkler, C. M. Crews, Pharmacol. Ther. 174 (2017) 138 (http://dx.doi.org/10.1016/j.pharmthera.2017.02.027)

J. Campbell, C. J. Ryan, R. Brough, I. Bajrami, H. N. Pemberton, I. Y. Chong, S. Costa-Cabral, J. Frankum, A. Gulati, H. Holme, R. Miller, S. Postel-Vinay, R. Rafiq, W. Wei, C. T. Williamson, D. A. Quigley, J. Tym, B. Al-Lazikani, T. Fenton, R. Natrajan, S. J. Strauss, A. Ashworth, C. J. Lord, Cell Rep. 14 (2016) 2490 (http://dx.doi.org/10.1016/j.celrep.2016.02.023)

G. S. Cowley, B. A. Weir, F. Vazquez, P. Tamayo, J. A. Scott, S. Rusin, A. East-Sel-etsky, L. D. Ali, W. F. Gerath, S. E. Pantel, P. H. Lizotte, G. Jiang, J. Hsiao, A. Tsherniak, E. Dwinell, S. Aoyama, M. Okamoto, W. Harrington, E. Gelfand, T. M. Green, M. J. Tomko, S. Gopal, T. C. Wong, H. Li, S. Howell, N. Stransky, T. Liefeld, D. Jang, J. Bistline, B. Hill Meyers, S. A. Armstrong, K. C. Anderson, K. Stegmaier, M. Reich, D. Pellman, J. S. Boehm, J. P. Mesirov, T. R. Golub, D. E. Root, W. C. Hahn, Sci. Data 1 (2014) 140035 (http://dx.doi.org/10.1038/sdata.2014.35)

T. Wang, K. Birsoy, N. W. Hughes, K. M. Krupczak, Y. Post, J. J. Wei, E. S. Lander, D. M. Sabatini, Science 350 (2015) 1096 (http://dx.doi.org/10.1126/science.aac7041)

J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin, S. Kim, C. J. Wilson, J. Lehár, G. V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M. F. Berger, J. E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jané-Valbuena, F. A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I. H. Engels, J. Cheng, G. K. Yu, J. Yu, P. Aspesi, M. de Silva, K. Jagtap, M. D. Jones, L. Wang, C. Hatton, E. Palescandolo, S. Gupta, S. Mahan, C. Sougnez, R. C. Onofrio, T. Liefeld, L. MacConaill, W. Winckler, M. Reich, N. Li, J. P. Mesirov, S. B. Gabriel, G. Getz, K. Ardlie, V. Chan, V. E. Myer, B. L. Weber, J. Porter, M. Warmuth, P. Finan, J. L. Harris, M. Meyerson, T. R. Golub, M. P. Morrissey, W. R. Sellers, R. Schlegel, L. A. Garraway, Nature 483 (2012) 603 (http://dx.doi.org/10.1038/nature11003)

A. L. Hopkins, C. R. Groom, Nat. Rev. Drug Discov. 1 (2002) 727 (http://dx.doi.org/10.1038/nrd892)

A. C. Lai, C. M. Crews, Nat. Rev. Drug Discov. 16 (2017) 101 (http://dx.doi.org/10.1038/nrd.2016.211)

M. Toure, C. M. Crews, Angew. Chem. Int. Ed. Engl. 55 (2016) 1966 (http://dx.doi.org/10.1002/anie.201507978)

J. S. Lazo, E. R. Sharlow, Annu. Rev. Pharmacol. Toxicol. 56 (2016) 23 (http://dx.doi.org/10.1146/annurev-pharmtox-010715-103440)

L. Jin, W. Wang, G. Fang, Annu. Rev. Pharmacol. Toxicol. 54 (2014) 435 (http://dx.doi.org/10.1146/annurev-pharmtox-011613-140028)

A. A. Adjei, J. Clin. Oncol. 24 (2006) 4054 (http://dx.doi.org/10.1200/JCO.2006.07.4658)

S.-L. Paiva, C. M. Crews, Curr. Opin. Chem. Biol. 50 (2019) 111 (http://dx.doi.org/10.1016/j.cbpa.2019.02.022)

S. An, L. Fu, EBioMedicine 36 (2018) 553 (http://dx.doi.org/10.1016/j.ebiom.2018.09.005)

D. Leiser, B. Pochon, W. Blank-Liss, P. Francica, A. A. Glück, D. M. Aebersold, Y. Zimmer, M. Medová, FEBS Lett. 588 (2014) 653 (http://dx.doi.org/10.1016/j.febslet.2013.12.025)

J. Spiegel, P. M. Cromm, G. Zimmermann, T. N. Grossmann, H. Waldmann, Nat. Chem. Biol. 10 (2014) 613 (http://dx.doi.org/10.1038/nchembio.1560)

S. Dogan, R. Shen, D. C. Ang, M. L. Johnson, S. P. D’Angelo, P. K. Paik, E. B. Brzostowski, G. J. Riely, M. G. Kris, M. F. Zakowski, M. Ladanyi, Clin. Cancer Res. 18 (2012) 6169 (http://dx.doi.org/10.1158/1078-0432.CCR-11-3265)

K. Eisermann, D. Wang, Y. Jing, L. E. Pascal, Z. Wang, Transl. Androl. Urol. 2 (2013) 137 (http://dx.doi.org/ 10.3978/j.issn.2223-4683.2013.09.15)

C. M. Crews, Chem. Biol. 17 (2010) 551 (http://dx.doi.org/10.1016/j.chembiol.2010.05.011)

J. P. Overington, B. Al-Lazikani, A. L. Hopkins, Nat. Rev. Drug Discov. 5 (2006) 993 (http://dx.doi.org/10.1038/nrd2199)

J. S. Duncan, M. C. Whittle, K. Nakamura, A. N. Abell, A. A. Midland, J. S. Zawistowski, N. L. Johnson, D. A. Granger, N. V. Jordan, D. B. Darr, J. Usary, P.-F. Kuan, D. M. Smalley, B. Major, X. He, K. A. Hoadley, B. Zhou, N. E. Sharpless, C. M. Perou, W. Y. Kim, S. M. Gomez, X. Chen, J. Jin, S. V. Frye, H. S. Earp, L. M. Graves, G. L. Johnson, Cell 149 (2012) 307 (http://dx.doi.org/10.1016/j.cell.2012.02.053)

T. Visakorpi, E. Hyytinen, P. Koivisto, M. Tanner, R. Keinänen, C. Palmberg, A. Palotie, T. Tammela, J. Isola, O. P. Kallioniemi, Nat. Genet. 9 (1995) 401 (http://dx.doi.org/10.1038/ng0495-401)

G. Hatzivassiliou, K. Song, I. Yen, B. J. Brandhuber, D. J. Anderson, R. Alvarado, M. J. C. Ludlam, D. Stokoe, S. L. Gloor, G. Vigers, T. Morales, I. Aliagas, B. Liu, S. Sideris, K. P. Hoeflich, B. S. Jaiswal, S. Seshagiri, H. Koeppen, M. Belvin, L. S. Friedman, S. Malek, Nature 464 (2010) 431 (http://dx.doi.org/10.1038/nature08833)

S. J. Heidorn, C. Milagre, S. Whittaker, A. Nourry, I. Niculescu-Duvas, N. Dhomen, J. Hussain, J. S. Reis-Filho, C. J. Springer, C. Pritchard, R. Marais, Cell 140 (2010) 209 (http://dx.doi.org/10.1016/j.cell.2009.12.040)

P. I. Poulikakos, C. Zhang, G. Bollag, K. M. Shokat, N. Rosen, Nature 464 (2010) 427 (http://dx.doi.org/10.1038/nature08902)

J. Rauch, N. Volinsky, D. Romano, W. Kolch, Cell Commun. Signal. 9 (2011) 23 (http://dx.doi.org/10.1186/1478-811X-9-23)

X. Tan, N. Thapa, Y. Sun, R. A. Anderson, Cell 160 (2015) 145 (http://dx.doi.org/10.1016/j.cell.2014.12.006)

I. Vivanco, Z. C. Chen, B. Tanos, B. Oldrini, W.-Y. Hsieh, N. Yannuzzi, C. Campos, I. K. Mellinghoff, Elife 3 (2014) e03751 (http://dx.doi.org/10.7554/eLife.03751)

Z. Weihua, R. Tsan, W.-C. Huang, Q. Wu, C.-H. Chiu, I. J. Fidler, M.-C. Hung, Cancer Cell 13 (2008) 385 (http://dx.doi.org/10.1016/j.ccr.2008.03.015)

P. M. Cromm, C. M. Crews, Cell Chem. Biol. 24 (2017) 1181 (http://dx.doi.org/10.1016/j.chembiol.2017.05.024)

A. M. Giannetti, in Methods Enzymol., L. C. Kuo (Ed.), Academic Press, Cambridge, MA, 2011, p. 169 (http://dx.doi.org/10.1016/B978-0-12-381274-2.00008-X)

S. B. Shuker, P. J. Hajduk, R. P. Meadows, S. W. Fesik, Science 274 (1996) 1531 (http://dx.doi.org/10.1126/science.274.5292.1531)

E. H. Mashalidis, P. Śledź, S. Lang, C. Abell, Nat. Protoc. 8 (2013) 2309 (http://dx.doi.org/10.1038/nprot.2013.130)

D. A. Erlanson, S. W. Fesik, R. E. Hubbard, W. Jahnke, H. Jhoti, Nat. Rev. Drug Discov. 15 (2016) 605 (http://dx.doi.org/10.1038/nrd.2016.109)

J.-P. Renaud, C. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, H. Nar, Nat. Rev. Drug Discov. 15 (2016) 679 (http://dx.doi.org/10.1038/nrd.2016.123)

K. H. Bleicher, H.-J. Böhm, K. Müller, A. I. Alanine, Nat. Rev. Drug Discov. 2 (2003) 369 (http://dx.doi.org/10.1038/nrd1086)

R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T. Garyantes, D. V. S. Green, R. P. Hertzberg, W. P. Janzen, J. W. Paslay, U. Schopfer, G. S. Sittampalam, Nat. Rev. Drug Discov. 10 (2011) 188 (http://dx.doi.org/10.1038/nrd3368)

I. Kola, J. Landis, Nat. Rev. Drug Discov. 3 (2004) 711 (http://dx.doi.org/10.1038/nrd1470)

M. Zengerle, K.-H. Chan, A. Ciulli, ACS Chem. Biol. 10 (2015) 1770 (http://dx.doi.org/10.1021/acschembio.5b00216)

M. Pettersson, C. M. Crews, Drug Discov. Today Technol. 31 (2019) 15 (http://dx.doi.org/10.1016/j.ddtec.2019.01.002)

T. Ishida, A. Ciulli, SLAS Discov. 26 (2021) 484 (http://dx.doi.org/10.1177/2472555220965528)

M. J. Bond, C. M. Crews, RSC Chem. Biol. 2 (2021) 725 (http://dx.doi.org/10.1039/D1CB00011J)

Z. S. Hann, C. Ji, S. K. Olsen, X. Lu, M. C. Lux, D. S. Tan, C. D. Lima, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 15475 (http://dx.doi.org/10.1073/pnas.1905488116)

D. P. Bondeson, A. Mares, I. E. D. Smith, E. Ko, S. Campos, A. H. Miah, K. E. Mulholland, N. Routly, D. L. Buckley, J. L. Gustafson, N. Zinn, P. Grandi, S. Shimamura, G. Bergamini, M. Faelth-Savitski, M. Bantscheff, C. Cox, D. A. Gordon, R. R. Willard, J. J. Flanagan, L. N. Casillas, B. J. Votta, W. den Besten, K. Famm, L. Kruidenier, P. S. Carter, J. D. Harling, I. Churcher, C. M. Crews, Nat. Chem. Biol. 11 (2015) 611 (http://dx.doi.org/10.1038/nchembio.1858)

L.-W. Xia, M.-Y. Ba, W. Liu, W. Cheng, C.-P. Hu, Q. Zhao, Y.-F. Yao, M.-R. Sun, Y.-T. Duan, Future Med. Chem. 11 (2019) 2919 (http://dx.doi.org/10.4155/fmc-2019-0159)

K. M. Sakamoto, K. B. Kim, A. Kumagai, F. Mercurio, C. M. Crews, R. J. Deshaies, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 8554 (http://dx.doi.org/10.1073/pnas.141230798)

K. M. Sakamoto, K. B. Kim, R. Verma, A. Ransick, B. Stein, C. M. Crews, R. J. Deshaies, Mol. Cell. Proteomics 2 (2003) 1350 (http://dx.doi.org/10.1074/mcp.T300009-MCP200)

D. Zhang, S.-H. Baek, A. Ho, K. Kim, Bioorg. Med. Chem. Lett. 14 (2004) 645 (http://dx.doi.org/10.1016/j.bmcl.2003.11.042)

J. S. Schneekloth, F. N. Fonseca, M. Koldobskiy, A. Mandal, R. Deshaies, K. Sakamoto, C. M. Crews, J. Am. Chem. Soc. 126 (2004) 3748 (http://dx.doi.org/10.1021/ja039025z)

H. Lee, D. Puppala, E.-Y. Choi, H. Swanson, K.-B. Kim, Chembiochem 8 (2007) 2058 (http://dx.doi.org/10.1002/cbic.200700438)

A. Rodriguez-Gonzalez, K. Cyrus, M. Salcius, K. Kim, C. M. Crews, R. J. Deshaies, K. M. Sakamoto, Oncogene 27 (2008) 7201 (http://dx.doi.org/10.1038/onc.2008.320)

D. L. Buckley, C. M. Crews, Angew. Chem. Int. Ed. Engl. 53 (2014) 2312 (http://dx.doi.org/10.1002/anie.201307761)

A. R. Schneekloth, M. Pucheault, H. S. Tae, C. M. Crews, Bioorg. Med. Chem. Lett. 18 (2008) 5904 (http://dx.doi.org/10.1016/j.bmcl.2008.07.114)

L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, E. A. Liu, Science 303 (2004) 844 (http://dx.doi.org/10.1126/science.1092472)

K. Sekine, K. Takubo, R. Kikuchi, M. Nishimoto, M. Kitagawa, F. Abe, K. Nishikawa, T. Tsuruo, M. Naito, J. Biol. Chem. 283 (2008) 8961 (http://dx.doi.org/10.1074/jbc.M709525200)

Y. Itoh, M. Ishikawa, M. Naito, Y. Hashimoto, J. Am. Chem. Soc. 132 (2010) 5820 (http://dx.doi.org/10.1021/ja100691p)

K. Okuhira, N. Ohoka, K. Sai, T. Nishimaki-Mogami, Y. Itoh, M. Ishikawa, Y. Hashimoto, M. Naito, FEBS Lett. 585 (2011) 1147 (http://dx.doi.org/10.1016/j.febslet.2011.03.019)

D. L. Buckley, I. Van Molle, P. C. Gareiss, H. S. Tae, J. Michel, D. J. Noblin, W. L. Jorgensen, A. Ciulli, C. M. Crews, J. Am. Chem. Soc. 134 (2012) 4465 (http://dx.doi.org/10.1021/ja209924v)

J. Hines, J. D. Gough, T. W. Corson, C. M. Crews, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 8942 (http://dx.doi.org/10.1073/pnas.1217206110)

D. L. Buckley, K. Raina, N. Darricarrere, J. Hines, J. L. Gustafson, I. E. Smith, A. H. Miah, J. D. Harling, C. M. Crews, ACS Chem. Biol. 10 (2015) 1831 (http://dx.doi.org/10.1021/acschembio.5b00442)

R. F. Ohana, L. P. Encell, K. Zhao, D. Simpson, M. R. Slater, M. Urh, K. V. Wood, Protein Expr. Purif. 68 (2009) 110 (http://dx.doi.org/10.1016/j.pep.2009.05.010)

G. E. Winter, D. L. Buckley, J. Paulk, J. M. Roberts, A. Souza, S. Dhe-Paganon, J. E. Bradner, Science 348 (2015) 1376 (http://dx.doi.org/10.1126/science.aab1433)

G. Ermondi, D. Garcia Jimenez, M. Rossi Sebastiano, G. Caron, ACS Med. Chem. Lett. 12 (2021) 1056 (http://dx.doi.org/10.1021/acsmedchemlett.1c00298)

H. Lebraud, D. J. Wright, C. N. Johnson, T. D. Heightman, ACS Cent. Sci. 2 (2016) 927 (http://dx.doi.org/10.1021/acscentsci.6b00280)

B. Zhou, J. Hu, F. Xu, Z. Chen, L. Bai, E. Fernandez-Salas, M. Lin, L. Liu, C.-Y. Yang, Y. Zhao, D. McEachern, S. Przybranowski, B. Wen, D. Sun, S. Wang, J. Med. Chem. 61 (2018) 462 (http://dx.doi.org/10.1021/acs.jmedchem.6b01816)

ClinicalTrials.gov, http://clinicaltrials.gov/ct2/show/NCT03888612 (accessed Nov 18, 2021)

ARVINAS, http://ir.arvinas.com/static-files/1667ba5f-46b6-4c6c-a868-bc1a306fdaad (accessed Nov 22, 2021)

Clinicaltrials.gov, http://clinicaltrials.gov/ct2/show/NCT04072952 (accessed Nov 18, 2021)

C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Deliv. Rev. 46 (2001) 3 (http://dx.doi.org/ 10.1016/s0169-409x(00)00129-0)

C. A. Lipinski, Drug Discov. Today Technol. 1 (2004) 337 (http://dx.doi.org/10.1016/j.ddtec.2004.11.007)

H. J. Maple, N. Clayden, A. Baron, C. Stacey, R. Felix, Medchemcomm 10 (2019) 1755 (http://dx.doi.org/10.1039/C9MD00272C)

T. Neklesa, L. B. Snyder, R. R. Willard, N. Vitale, J. Pizzano, D. A. Gordon, M. Bookbinder, J. Macaluso, H. Dong, C. Ferraro, G. Wang, J. Wang, C. M. Crews, J. Houston, A. P. Crew, I. Taylor, J. Clin. Oncol. 37 (2019) 259 (http://dx.doi.org/10.1200/JCO.2019.37.7_suppl.259)

ARVINAS, http://ir.arvinas.com/node/7136/pdf (accessed Nov 22, 2021)

Y. Zhang, C. Loh, J. Chen, N. Mainolfi, Drug Discov. Today Technol. 31 (2019) 53 (http://dx.doi.org/10.1016/j.ddtec.2019.01.001)

B. C. Doak, B. Over, F. Giordanetto, J. Kihlberg, Chem. Biol. 21 (2014) 1115 (http://dx.doi.org/10.1016/j.chembiol.2014.08.013)

D. A. DeGoey, H.-J. Chen, P. B. Cox, M. D. Wendt, J. Med. Chem. 61 (2018) 2636 (http://dx.doi.org/10.1021/acs.jmedchem.7b00717)

E. A. Villar, D. Beglov, S. Chennamadhavuni, J. A. Porco, D. Kozakov, S. Vajda, A. Whitty, Nat. Chem. Biol. 10 (2014) 723 (http://dx.doi.org/10.1038/nchembio.1584)

M. Rossi Sebastiano, B. C. Doak, M. Backlund, V. Poongavanam, B. Over, G. Ermondi, G. Caron, P. Matsson, J. Kihlberg, J. Med. Chem. 61 (2018) 4189 (http://dx.doi.org/10.1021/acs.jmedchem.8b00347)

B. Kuhn, P. Mohr, M. Stahl, J. Med. Chem. 53 (2010) 2601 (http://dx.doi.org/10.1021/jm100087s)

R. I. Troup, C. Fallan, M. G. J. Baud, Explor. Target. Antitumor Ther. 1 (2020) 273 (http://dx.doi.org/10.37349/etat.2020.00018)

C. Qin, Y. Hu, B. Zhou, E. Fernandez-Salas, C.-Y. Yang, L. Liu, D. McEachern, S. Przybranowski, M. Wang, J. Stuckey, J. Meagher, L. Bai, Z. Chen, M. Lin, J. Yang, D. N. Ziazadeh, F. Xu, J. Hu, W. Xiang, L. Huang, S. Li, B. Wen, D. Sun, S. Wang, J. Med. Chem. 61 (2018) 6685 (http://dx.doi.org/10.1021/acs.jmedchem.8b00506)

X. Han, C. Wang, C. Qin, W. Xiang, E. Fernandez-Salas, C.-Y. Yang, M. Wang, L. Zhao, T. Xu, K. Chinnaswamy, J. Delproposto, J. Stuckey, S. Wang, J. Med. Chem. 62 (2019) 941 (http://dx.doi.org/10.1021/acs.jmedchem.8b01631)

H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. Engl. 40 (2001) 2004 (http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5)

J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 36 (2007) 1249 (http://dx.doi.org/10.1039/B613014N)

M. Schiedel, D. Herp, S. Hammelmann, S. Swyter, A. Lehotzky, D. Robaa, J. Oláh, J. Ovádi, W. Sippl, M. Jung, J. Med. Chem. 61 (2018) 482 (http://dx.doi.org/10.1021/acs.jmedchem.6b01872)

M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung, Angew. Chem. Int. Ed. Engl. 55 (2016) 2252 (http://dx.doi.org/10.1002/anie.201509843)

X. Sun, J. Wang, X. Yao, W. Zheng, Y. Mao, T. Lan, L. Wang, Y. Sun, X. Zhang, Q. Zhao, J. Zhao, R.-P. Xiao, X. Zhang, G. Ji, Y. Rao, Cell Discov. 5 (2019) 10 (http://dx.doi.org/10.1038/s41421-018-0079-1)

R. J. Deshaies, Nat. Chem. Biol. 11 (2015) 634 (http://dx.doi.org/10.1038/nchembio.1887)

X. Sun, H. Gao, Y. Yang, M. He, Y. Wu, Y. Song, Y. Tong, Y. Rao, Signal Transduct. Target. Ther. 4 (2019) 64 (http://dx.doi.org/10.1038/s41392-019-0101-6)

C. E. Nelson, C. H. Hakim, D. G. Ousterout, P. I. Thakore, E. A. Moreb, R. M. C. Rivera, S. Madhavan, X. Pan, F. A. Ran, W. X. Yan, A. Asokan, F. Zhang, D. Duan, C. A. Gersbach, Science 351 (2016) 403 (http://dx.doi.org/10.1126/science.aad5143)

G. A. Collins, A. L. Goldberg, Cell 169 (2017) 792 (http://dx.doi.org/10.1016/j.cell.2017.04.023).

Most read articles by the same author(s)