Electrochemical properties of carbonized bentonite Scientific paper

Main Article Content

Nataša Jović-Jovičić
https://orcid.org/0000-0001-9940-9508
Danica Bajuk-Bogdanović
https://orcid.org/0000-0003-2443-376X
Tatjana Novaković
https://orcid.org/0000-0002-6407-9833
Predrag Banković
https://orcid.org/0000-0002-9732-7370
Aleksandra Milutinović-Nikolić
https://orcid.org/0000-0002-1768-6489
Zorica Mojović
https://orcid.org/0000-0003-4804-0776

Abstract

Organomodified bentonites were obtained by modification of bento­nite clay from local mine Bogovina, with four different alkylammonium ions in the amounts that correspond to cation exchange capacity. Carbonized bento­nites, obtained by pyrolyzing the organomodified bentonites in the flow of nit­ro­gen, were characterized using XRD, low-temperature N2 physisorption and Raman spectroscopy. Structural and textural properties of carbonized bento­nites depended on the arrangement of alkylammonium cations in the paternal organomodified bentonite, while the Raman spectroscopy confirmed the pre­sence of amorphous carbon. The obtained carbonized bentonites were used for modification of the carbon paste electrode. The modified electrodes were investigated using cyclic voltammetry and electrochemical impedance spectro­scopy. The electrosorption of chloride and sulfate anions on carbonized bento­nites was studied by chronocoulometry. The results were interpreted in the terms of surface groups and textural properties of the carbonized bentonites.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Jović-Jovičić, D. . Bajuk-Bogdanović, T. . Novaković, P. Banković, A. . Milutinović-Nikolić, and Z. Mojović, “Electrochemical properties of carbonized bentonite: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 1, pp. 41–54, Nov. 2022.
Section
Electrochemistry
Author Biography

Zorica Mojović, University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade, Republic of Serbia

    

Funding data

References

M. F. Brigatti, E. Galán, B. K. G. Theng, in Handbook of Clay Science, Developments in Clay Science, F. Bergaya, G. Lagaly (Eds.), Elsevier, Amsterdam, 2013, pp. 21–81 (ISBN: 978-0-08-098259-5)

P.K. Ghosh, A.J. Bard, J. Am. Chem. Soc. 105 (1983) 5691 (https://doi.org/10.1021/ja00355a030)

S. M. Macha, A. Fitch, Microchim. Acta 128 (1998) 1 (https://doi.org/10.1007/BF01242184)

Z. Navratilova, P. Kula, Electroanalysis 15 (2003) 837 (https://doi.org/10.1002/elan.200390103)

I. K. Tonle, E. Ngameni, A. Walcarius, Sensors Actuators, B 110 (2005) 195 (https://doi.org/10.1016/j.snb.2005.01.027)

P. Falaras, F. Lezou, J. Electroanal. Chem. 455 (1998) 169 (https://doi.org/10.1016/S0022-0728(00)00133-9)

D. Petridis, P. De S. Kaviratna, T.J. Pinnavaia, J. Electroanal. Chem. 410 (1996) 93 (https://doi.org/10.1016/0022-0728(96)04541-X)

I. K. Tonle, E. Ngameni, F. M. M. Tchieno, A. Walcarius, J. Solid State Electrochem. 19 (2015) 1949 (https://doi.org/10.1007/s10008-014-2728-0)

P. R. Vernekar, N. P. Shetti, M. M. Shnbhag, S. J. Malode, R .S. Malladi, K. R. Reddy. Microchim. J. 159 (2020) 105441 (https://doi.org/10.1016/j.microc.2020.105441)

N. P. Shetti, S. J. Malode, D. S. Nayak, R. R. Naik, G. T. Kuchinad, K. R. Reddy, S. S. Shukla, T. M. Aminabhavi, Michochim. J. 155 (2020) 104727 (https://doi.org/10.1016/j.microc.2020.104727)

N. P. Shetti, D. S. Nayak, S. J. Malode, Vacuum 155 (2018) 524 (https://doi.org/10.1016/j.vacuum.2018.06.050)

P. Aranda, M. Darder, R. Fernández-Saavedra, M. Lopez-Blanco, E. Ruiz-Hitzky, Thin Solid Films 495 (2006) 104 (https://doi.org/10.1016/j.tsf.2005.08.284)

M. Darder, E. Ruiz-Hitzky, J. Mater. Chem. 15 (2005) 3913 (https://doi.org/10.1039/B505958E)

A. Gómez-Avilés, M. Darder, P. Aranda, E. Ruiz-Hitzky, Angew. Chem. Int. Ed. Engl. 46 (2007) 923 (https://doi.org/10.1002/anie.200603802)

C. Zhang, D. He, J. Ma, W. Tang, T. D. Waite, Water Res. 128 (2018) 314 (https://doi.org/10.1016/j.watres.2017.10.024)

N. Jović-Jovičić, M. Mojović, D. Stanković, B. Nedić-Vasiljević, A. Milutinović-Nikolić, P. Banković, Z. Mojović, Electrochim. Acta 296 (2019) 387 (https://doi.org/10.1016/j.electacta.2018.11.031)

S. Biniak, A. Swiatkowski, M. Pakuła, M. Sankowska, K. Kuśmierek, G. Trykowski, Carbon 51 (2013) (https://doi.org/10.1016/j.carbon.2012.08.057)

P. Baskaralingam, M. Pulikesi, D. Elango, V. Ramamurthi, S. Sivanesan, J. Hazard. Mater. 128 (2006) 138 (https://doi.org/10.1016/j.jhazmat.2005.07.049)

EPA, Method 9080: Cation-exchange capacity of soils (ammonium acetate), https://www.epa.gov/sites/production/files/2015-12/documents/9080.pdf

N. Jović-Jovičić, A. Milutinović-Nikolić, M. Žunić, Z. Mojović, P. Banković, I. Gržetić, D. Jovanović, J. Contam. Hydrol. 150 (2013) 1 (https://doi.org/10.1016/j.jconhyd.2013.03.004)

F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, G. Maurin, Adsorption by powders and porous solids, principles, methodology and applications, Academic Press, New York, 2012 (https://doi.org/10.1016/B978-0-12-598920-6.X5000-3)

B. C. Lippens, B. G. Linsen, J. H. De Boer, J. Catal. 3 (1964) 32 (https://doi.org/10.1016/0021-9517(64)90089-2)

K. S. Sing, Pure Appl. Chem. 57 (1985) 603 (https://doi.org/10.1351/pac198557040603)

International Center for Diffraction Data, Joint Committee on Powder Diffraction Standards (JCPDS), Swarthmore, PA, 1990

N. Jović-Jovičić, A. Milutinović-Nikolić, P. Banković, B. Dojčinović, B. Nedić, I. Gržetić, D. Jovanović, Acta Phys. Pol., A 117 (2010) 849 (https://doi.org/10.12693/APhysPolA.117.849)

A. Abu Rabi-Stanković, A. Milutinović-Nikolić, N. Jović-Jovičić, P. Banković, M. Žunić, Z. Mojović, D. Jovanović, Clays Clay Miner. 60 (2012) 291 (https://doi.org/10.1346/CCMN.2012.0600306)

A. Abu Rabi-Stanković, Z. Mojović, A. Milutinović-Nikolić, N. Jović-Jovičić, P. Banković, M. Žunić, D. Jovanović, Appl. Clay Sci. 77–78 (2013) 61 (https://doi.org/10.1016/j.clay.2013.04.003)

P. Banković, A. Milutinovic-Nikolic, Z. Mojović, N. Jović-Jovičić, M. Perovic, V. Spasojevic, D. Jovanović, Micropor. Mesopor. Mater. 165 (2013) 247 (https://doi.org/10.1016/j.micromeso.2012.08.029)

C. Ruiz-García, J. Perez-Carvajal, A. Berenguer-Murci, M. Darder, P. Aranda, D. Cazorla-Amoros, E. Ruiz-Hitzky, Phys. Chem. Chem. Phys. 15 (2013) 18635 (https://doi.org/10.1039/C3CP53258E)

P Anadão, E. A. Hildebrando, I. L. R. Pajolli, K. R. de Oliveira Pereira, H. Wiebeck, F. R. V. Díaz, Appl. Clay Sci. 53 (2011) 288 (https://doi.otg/10.1016/j.clay.2011.04.022)

Q. Chen, R. Zhu, W. Deng, Y Xu, J. Zhu, Q. Tao, H. Hongping, Appl. Clay Sci. 100 (2014) 112 (https://doi.org/10.1016/j.clay.2014.04.011)

U. Kuila, M. Prasad, Geophys. Prospect. 61 (2013) 341 (https://doi.org/10.1111/1365-2478.12028)

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K.S. Novoselov, C. Galiotis, Nat. Commun. 2 (2011) 255 (https://doi.org/10.1038/ncomms1247)

J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S. R. P. Silva, J. Appl. Phys. 80 (1996) 440 (https://doi.org/10.1063/1.362745)

A. C. Ferrari, J. Robertson, Phys. Rev., B 61 (2000) 14095 (https://doi.org/10.1103/PhysRevB.61.14095)

A. Fitch, Clays Clay Miner. 38 (1990) 391 (https://doi.org/10.1346/CCMN.1990.0380408)

C. Apetrei, I. M. Apetrei, J. A. De Saja, M. L. Rodriguez-Mendez, Sensors 11 (2011) 1328 (https://doi.org/10.3390/s110201328)

B.T. Mark, E. Orazem, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Inc, Hoboken, NJ, 2008 (https://doi.org/10.1002/9780470381588)

R. L. McCreery, Chem. Rev. 108 (2008) 2646 (https://doi.org/10.1021/cr068076m)

A. Kriaa, N. Hamdi, E. Srasra, Russ. J. Electrochem. 43 (2007) 167 (https://doi.org/10.1134/S102319350702005X)

S. Gu, X. Kang, L. Wang, E. Lichtfouse, C. Wang, Environ. Chem. Lett. 17 (2019) 629 (https://doi.org/10.1007/s10311-018-0813-9)

L. Zhang, J. Cao, J. Therm. Anal. Calorim. 137 (2019) 1 (https://doi.org/10.1007/s10973-018-7947-7)

M. M. Lounasvuori, M. Rosillo-Lopez, C. G. Salzmann, D. J. Caruana, K. B. Holt, Faraday Discuss. 172 (2014) 293 (https://doi.org/10.1039/C4FD00034J)

H. Nara, D. Mukoyama, R. Shimizu, T. Mommaa, T. Osaka, J. Power Sources 409 (2019) 139 (https://doi.org/10.1016/j.jpowsour.2018.09.01)

Y. Abe, N. Hori, S. Kumagai, Energies 12 (2019) 4507 (https://doi.org/10.3390/en12234507)

M. Noked, E. Avraham, A. Soffer, D. Aurbach, J. Phys. Chem., C 113 (2009) 21319 (https://doi.org/10.1021/jp905987j)

G. Rasines, P. Lavel, C. Macías, M. Haro, C. O. Ania, J. L. Tirado, J. Electroanal. Chem. 671 (2012) 92 (http://dx.doi.org/10.1016/j.jelechem.2012.02.025)

Z. Chen, H. Zhang, C. Wu, Y. Wang, W. Li, Desalination 369 (2015) 46 (https://doi.org/10.1016/j.desal.2015.04.022).

Most read articles by the same author(s)