Chromium(VI) removal from aqueous solutions using a polyethylenimine–epichlorohydrin resin

Authors

  • Sofia Sarri Department of Chemistry, Aristotle University, GR-54124 Thessaloniki
  • Panagiotis Misaelides Department of Chemistry, Aristotle University, GR-54124 Thessaloniki http://orcid.org/0000-0002-2800-5028
  • Dimitrios Zamboulis Department of Chemistry, Aristotle University, GR-54124 Thessaloniki
  • Fotini Noli Department of Chemistry, Aristotle University, GR-54124 Thessaloniki
  • Jolanta Warchol Department of Water Purification and Protection, Rzeszow University of Technology, Rzeszow
  • Fani Pinakidou Department of Physics, Aristotle University, GR-54124 Thessaloniki
  • Maria Katsikini Department of Physics, Aristotle University, GR-54124 Thessaloniki

DOI:

https://doi.org/10.2298/JSC160419061S

Keywords:

chromium, removal, polyethylenimine–epichlorohydrin resin, uptake isotherms, kinetics, modeling, XAFS

Abstract

The ability of the synthesized polyethylenimine–epichlorohydrin resin to remove Cr(VI) from aqueous solutions was investigated in the absence (initial pH 2–7) and presence of background electrolytes (NaNO3 and Na2SO4 solutions of initial pH 3 and 6). The determined Cr uptake was significantly higher than the one reported for the majority of other sorbents. The photo­met­rically determined uptake data were modeled by the Langmuir, Redlich–Peter­son, Langmuir–Freundlich and Toth equation. The modeling results did not indicate any preference to one specific model in terms of the goodness-of-fit and the prediction of maximum sorption capacity. The Cr-sorption kinetics were investigated at 15, 25, 35 and 45 °C using 51Cr-labeled solutions and
γ-ray spectroscopy. The Cr-sorption was very fast at all studied temperatures and well reproduced by the pseudo-second order kinetics equation. The rate constant and activation energy values were calculated using the experimental data. The Cr-loaded resin was also examined by XRD, XPS, XAFS and SEM/
/EDS. The XPS and XAFS investigations indicated a partial reduction of Cr(VI) to Cr(III). The environmental compatibility of the Cr-loaded resin was examined using the EPA-TCLP method. The Cr-binding by the resin was very stable and regeneration attempts with HCl solutions of pH 3 were rather unsuc­cessful.

References

U.S. Environmental Protection Agency, Toxicological Review of Hexavalent Chromium, National Center for Environmental Assessment, Office of Research and Development, Washington, DC, USA, 1998, http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1006B2Z.txt, (accessed 11.4.16)

U.S. Department of Health and Human Services, Toxicological Profile for Chromium, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA, 2012, http://www.atsdr.cdc.gov/toxprofiles/tp7.pdf, (accessed 11.4.16)

D. E. Kimbrough, Y. Cohen, A. M. Winer, L. Creelman, C. Mabuni, Crit. Rev. Env. Sci. Tech. 29 (1999) 1

M. C. Brum, J. L. Capitaneo, J. F. Oliveira, Miner. Eng. 23 (2010) 270

N. K. Lazaridis, D. N. Bakoyannakis, E. A. Deliyanni, Chemosphere 58 (2005) 65

G. M. Haggerty, R. S. Bowman, Environ. Sci. Technol. 28 (1994) 452

P. Misaelides, D. Zamboulis, Pr. Sarridis, J. Warchoł, A. Godelitsas, Micropor. Mesopor. Mater. 108 (2008) 162

E. Pehlivan, S. Cetin, J. Hazard. Mater. 163 (2009) 448

S. Edebali, E. Pehlivan, Chem. Eng. J. 161 (2010) 161

M. Ghiaci, R. Kia, A. Abbaspur, F. Seyedeyn-Azad, Sep. Purif. Technol. 40 (2004) 285

T. Shi, Z. Wang, Y. Liu, S. Jia, D. Changming, J. Hazard. Mater. 161 (2009) 900

S. X. Liu, X. Chen, X. Y. Chen, Z. F. Liu, H. L. Wang, J. Hazard. Mater. 141 (2007) 315

F. Di Natale, A. Lancia, A. Molino, D. Musmarra, J. Hazard. Mater. 145 (2007) 381

S. Mor, K. Ravindra, N. R. Bishnoi, Bioresour. Technol. 98 (2007) 954

N. Zhao, N. Wei, J. Li, Z. Qiao, J. Cui, F. He, Chem. Eng. J. 115 (2005) 133

L. Yang, J. P. Chen, Bioresour. Technol. 99 (2008) 297

Z. Aksu, E. Balibek, J. Hazard. Mater. 145 (2007) 210

M. Ziagova, G. Dimitriadis, D. Aslanidou, X. Papaioannou, E. Litopoulou Tzannetaki, M. Liakopoulou-Kyriakides, Bioresour. Technol. 98 (2007) 2859

J. Anandkumar, B. Mandal, J. Hazard. Mater. 186 (2011) 1088

G. Z. Kyzas, M. Kostoglou, N. K. Lazaridis, Chem. Eng. J. 152 (2009) 440

A. C. Zimmermann, A. Mecabô, T. Fagundes, C. A. Rodrigues, J. Hazard. Mater. 179 (2010) 192

M. K. Aroua, F. M. Zuki, N. M. Sulaiman, J. Hazard. Mater. 147 (2007) 752

G. Arthanareeswaran, P. Thanikaivelan, N. Jaya, D. Mohan, M. Raajenthiren, J. Hazard. Mater. 139 (2007) 44

S. E. Ghazy, G. A. Moustafa, Bull. Chem. Soc. Jpn. 74 (2001) 1273

F. J. Alguacil, C. Caravaca, M. I. Martin, J. Chem. Technol. Biotech. 78 (2003) 1048

C. E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater. 223–224 (2012) 1

H. Cui, M. Fu, S. Yu, M. K. Wang, J. Hazard. Mater. 186 (2011) 1625

G. Qin, M. J. McGuire, N. K. Blute, C. Seidel, L. Fong, Environ. Sci. Technol. 39 (2005) 6321

A. H. Caravelli, L. Giannuzzi, N. E. Zaritzky, J. Hazard. Mater. 156 (2008) 214

A. Bampaiti, F. Noli, P. Misaelides, J. Radioanal. Nucl. Chem. 298 (2013) 909

S. E. Lee, J. U. Lee, H. T. Chon, J. S. Lee, J. Geochem. Explor. 96 (2008) 144

N. Zaitseva, V. Zaitsev, A. Walcarius, J. Hazard. Mater. 250–251 (2013) 454

L. Wang, W. Liu, T. Wang, J. Ni, Chem. Eng. J. 225 (2013) 153

Y. G. Zhao, H. Y. Shen, S. D. Pan, M. Q. Hu, J. Hazard. Mater. 182 (2010) 295

I. Larraza, M. López-Gónzalez, T. Corrales, G. Marcelo, J. Colloid Interf. Sci. 385 (2012) 24

L. Xu, L. Yang, M. Luo, X. Liang, X. Wei, J. Zhao, H. Liu, J. Hazard. Mater. 189 (2011) 787

S. Deng, Y. P. Ting, Environ. Sci. Technol. 39 (2005) 8490

M. Owlad, M. K. Aroua, W. M. Wan Daud, Bioresource Technol. 101 (2010) 5098

R. A. Khaydarov, R. R. Khaydarov, O. Gapurova, Water Res. 44 (2010) 1927

X. F. Sun, Y. Ma, X. W. Liu, S. G. Wang, B. Y. Gao, X. M. Li, Water Res. 44 (2010) 2517

X. F. Sun, C. Liu, Y. Ma, S. G. Wang, B. Y. Gao, X. M. Li, Colloids Surf. B 82 (2011) 456

A. D. Ebner, J. A. Ritter, H. J. Ploehn, R. L. Kochen, J. D. Navratil, Sep. Sci. Technol. 34 (1999) 1277

A. D. Eaton, L. S. Clesceri, A. E. Greenberg, Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA, Washington DC, U.S.A., 1995, p. 3–59

EPA, Method 1311, Toxicity Characteristic Leaching Procedure, https://www.epa.gov/sites/production/files/2015-12/documents/1311.pdf (accessed 11.4.16)

S. Kundu, W. Xia, W. Busser, M. Becker, D. A. Schmidt, M. Havenith, M. Muhler, Phys. Chem. Chem. Phys. 12 (2010) 4351

J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, Carbon 33 (1995) 1641

E. Baumgarten, A. Fiebes, A. Stumpe, F. Ronkel, J. W. Schultze, J. Mol. Catal. A: Chem. 113 (1996) 469

S. Sarri, P. Misaelides, D. Zamboulis, X. Gaona, M. Altmaier, H. Geckeis, J. Radioanal. Nucl. Chem. 307 (2016) 681

C. F. Baes Jr., R. E. Mesmer, The Hydrolysis of Cations, Krieger Publishing Company, Malabar FL, USA, 1986, p. 211–220

J. C. Bailar Jr., H. J. Emeléus, R. Nyholm, A. F. Trotman-Dickenson, Comprehensive Inorganic Chemistry, vol. 3. Pergamon Press, Oxford, UK, 1973, p. 637

A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, C. J. Powell, NIST X-ray Photo-electron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1, 2012, http://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_-dat&Elm=Cr (accessed 11.4.16)

X. Sun, L. Yang, H. Xing, J. Zhao, X. Li, Y. Huang, H. Liu, Colloid. Surface A 457 (2014) 160

M. Tromp, J. Moulin, G. Reid, J. Evans, Cr K-edge XANES spectroscopy: ligand and oxidation state dependence - what is oxidation state? Proceedings of the 13th Intern. Conference on X-Ray Absorption Fine Structure - XAFS13, AIP, (2007), Stanford, CA, USA, AIP Publishing, Melville NY, 2007, 882, p. 699

S. C. Chapra, R. P. Canale, Numerical methods for engineers, 2nd ed., McGraw Hill International, USA, 1990

D. I. Song, W. S. Shin, Environ. Sci. Technol. 39 (2005) 1138

M. Cernik, M. Borkovec, J. C. Westall, Environ. Sci. Technol. 29 (1995) 413

E. Repo, R. Petrus, M. Sillanpää, J. K. Warchoł, Chem. Eng. J. 172 (2011) 376

J. Warchoł, M. Matłok, P. Misaelides, F. Noli, D. Zamboulis, A. Godelitsas, Micropor. Mesopor. Mater. 153 (2012) 63

K. V. Kumar, S. Sivanesan, J. Hazard. Mater. 134 (2006) 237

Y. S. Ho, G. McKay, Process. Biochem. 34 (1999) 451

Y. S. Ho, J. C. Y. Ng, G. McKay, Sep. Sci. Technol. 36 (2001) 241

U.S. Environmental Protection Agency, Introduction to Hazardous Waste Identification (40 CFR Parts 261) EPA530-K-05-012, 2005, http://nepis.epa.gov/Exe/ZyPURL.cgi?Do¬ckey=P1009II8.txt (accessed 11.4.16)

A. El Nemr, A. El-Sikaily, A. Khaled, O. Abdelwahab, Arabian J. Chem. 8 (2015) 105

R. Sanghi, N. Sankararamakrishnan, B. C. Dave, J. Hazard. Mater. 169 (2009) 1074

X. Hu, J. Wang, Y. Liu, X. Li, G. Zeng, Z. Bao, X. Zeng, A. Chen, F. Long, J. Hazard. Mater. 185 (2011) 306

Y. Sağ, Y. Aktay, Process Biochem. 36 (2000) 157

S. Hena, J. Hazard. Mater. 181 (2010) 474.

Published

2016-11-26

How to Cite

[1]
S. Sarri, “Chromium(VI) removal from aqueous solutions using a polyethylenimine–epichlorohydrin resin”, J. Serb. Chem. Soc., vol. 81, no. 11, pp. 1321-1333, Nov. 2016.

Issue

Section

Environmental Chemistry

Most read articles by the same author(s)