DFT/TD-DFT study on the spectroscopic properties of zinc(II), nickel(II), and palladium(II) metal complexes with a thiourea derivative

Xin Wang, JieQiong Li, Li Wang, WenPeng Wu


The geometries, electronic structures, and spectral properties of three metal complexes Zn(C10H12N3OS)2 (1), Ni(C10H12N3OS)2 (2) and Pd(C10H12N3OS)2 (3) with N-2-pyridinylmorpholine-4-carbothioamide as a ligand were investigated by means of the DFT (density functional theory) and TD-DFT (time-dependent density functional theory) methods. Complex 1 has a distorted tetrahedral geometry, while complexes 2 and 3 present a distorted square-planar coordination environment. In the simulated range, the spectrum of complex 1 has five obvious absorption peaks and one of them has the strongest intensity. The latter two complexes have one more absorption peak and a shoulder with similar intensity. Moreover, the strongest peak of com­plexes 2 and 3 is blue-shifted as compared with that of complex 1.


TD-DFT theory; electronic spectra; electronic structures; thiourea


H. Arslan, N. Duran, N. O. Sahin, N. Kulcu, Asian J. Chem. 18 (2006) 1710

T. K. Venkatachalam, C. Mao, F. M. Uckun, Bioorg. Med. Chem. 12 (2004) 4275

S. Saeed, N. Rashid, M. Ali, R. Hussain, Eur. J. Chem. 1 (2010) 200

J. Madarász, P. Bombicz, M. Okuya, S. Kaneko, Solid State Ionics 141 (2001) 439

N. Selvakumarana, N. S. P. Bhuvaneshb, A. Endoc, R. Karvembu, Polyhedron 75 (2014) 95

S. I. Orysyk, V. V. Bon, V. I. Pekhnyo, Y. L. Zborovskii, V. V. Orysyk, M. V. Vovk, Polyhedron 38 (2012) 15

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215

A. D. Becke, J. Chem. Phys. 98 (1993) 5648

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev., B 46 (1992) 6671

W. R. Wadt, P. J. Hay, J. Chem. Phys. 82 (1985) 284

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299

Š. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117

O. V. Gritsenko, P. R. T. Schipper, E. J. Baerends, Chem. Phys. Lett. 302 (1999) 199

O. V. Gritsenko, P. R. T. Schipper, E. J. Baerends, Int. J. Quantum Chem. 76 (2000) 407

Amsterdam density functional program, Theoretical Chemistry, Vrije Universiteit, Ams¬terdam, http://www.scm.com

G. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931

X. H. Yu, N. Wang, H. Q. He, L. Wang, Spectrochim. Acta, A 122 (2014) 283

S. D. Yeole, S. R. Gadre, J. Chem. Phys. 132 (2010) 094102-1

P. Manna, S. K. Seth, A. Das, J. Hemming, R. Prendergast, M. Helliwell, S. R. Chou-dhury, A. Frontera, S. Mukhopadhyay, Inorg. Chem. 51 (2012) 3557

P. Kar, R. Biswas, M. G. B. Drew, A. Frontera, A. Ghosh, Inorg. Chem. 51 (2012) 1837

X. H. Yu, Y. X. Zhang, J. L. Zhang, H. Q. He, L. Wang, J. Electron Spectrosc. Relat. Phenom. 192 (2014) 7.

DOI: https://doi.org/10.2298/JSC160506071W

Copyright (c) 2016 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)