Possible reaction pathways of the lincomycin molecule according to the DFT calculation method

Bahar Eren, Yelda Yalcin Gurkan

Abstract


Human- used antibiotics are eliminated from the body with little or no transformation at all. Traces of eliminated antibiotics enter the receiving environment directly since they cannot be treated in prevalent wastewater treat­ment facilities. Thus, wastewaters containing traces of antibiotics have to be treated accordingly. Lincomycin is subsequently isolated from Streptomyces lincolnensis. Lincomycin and its derivatives are antibiotics exhibiting bio­log­ical activity against Gram-positive bacteria, and are natural antibiotics in the environment as pollutants. This study aims to predict the degradation mech­anism of lincomycin molecule in the gaseous phase and aqueous media. Pro­bable reaction path of lincomycin molecule with OH radicals was analyzed. Optimized geometry was calculated via Gauss View 5. Subsequently, the low­est energy status was determined through geometric optimization via Gaussian 09 program. Aiming to determine the intermediates in photocatalytic degrad­ation mechanism of lincomycin, geometric optimization of the molecule was realized through DFT method. Activation energy for the probable reaction path was calculated, and their most stable state from the thermodynamic perspective determined for the gaseous phase and aqueous media. Impact of water solvent was investigated using the conductor-like screening solvation model (COSMO). The predicted mechanism was confirmed by comparison with experimental results on simple structures reported in literature.


Keywords


lincomycin; hydroxyl radical; DFT; COSMO; Gaussian 09

Full Text:

PDF (2,258 kB)

References


R .E. L. Procópio, I. R. Silva, M. K. Martins, J. L. Azevedo, J. M. Araújo, Braz. J. Infect. Dis. 16 (2012) 466

B. Halling-Sorensen, S. Nors Nielsen, P. F. Lanzky, F. Ingerslev, H. C. Holten Lützhoft, S. E. Jorgensen, Chemosphere 36 (1998) 357

T. A. Ternes, Water Res. 32 (1998) 3245

C. G. Daughton, T. A. Ternes, Environ. Health Perspect. Suppl. 107 (1999) 907

N. Kemper, Ecol. Indic. 8 (2008) 1

Y. Ohnishi, J. Ishikawa, H. Hara, J. Bacteriol. 190 (2008) 4050

D. G. Larsson, C. Pedro, N. Paxeus, J. Hazard. Mater. 148 (2007) 751

D. Li, M. Yang, J. Hu, L. Ren, Y. Zhang, H. Chang, K. Li, Environ. Toxicol. Chem., A 27 (2008) 80

D. Li, M. Yang, J. Hu, Y. Zhang, H. Chang, F. Jin, Water Res. 42 (2008b) 307

K. Kümmerer, Chemosphere 75 (2009) 417

K. V. Thomas, in Proceedings of First International Conference on Sustainable Phar¬macy, 24–25 April, 2008, Osnabrück, Germany

S. E. Jorgensen, B. Halling-Sørensen, Chemosphere 40 (2000) 691

C. Winckler, A. Grafe, Stoffeintrag durch Tierarzneimittel und pharmakologisch wirk¬same Futterzusatzstoffe unter besonderer Berücksichtigung von Tetrazyklinen, UBA-Texte 44/0, Berlin, 2000

S. Thiele-Bruhn, J. Plant Nutr. Soil Sci. 166 (2000) 145

K. Verschueren, Handbook of Environmental Data on Organic Chemicals, 2nd ed., Van Nostrand Reinhold Company, New York, 1983

J. C. English, V. S. Bhat, G. L. Ball, C. J. McLellan, Regul. Toxicol. Pharmacol. 64 (2012) 269

R. W. Matthews, in Photocatalytic purification and treatment of water and air, D. F. Ollis, H. Al-Ekabi, Eds., Elsevier, New York, 1993, pp. 121–133

A. Taicheng, L. Sun, G. Li, S. Wan, J. Mol., Catal., A: Chem. 333 (2010) 128

V. G. Buxton, L. C. Greenstock, P. W. Helman, B. A. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513

M. Anbar, P. Neta, Int. J. Appl. Radiat. Isot. 18 (1965) 495

B. Halliwell, M. Grootveld, J. M. C. Gutteridge, Methods Biochem. Anal. 33 (2006) 59

A. Hatipoglu, D. Vione, Y. Yalcin, C. Minero, Z. Cinar, J. Photochem. Photobiol., A: Chem. 215 (2010) 59

P. W. Atkins, Physical Chemistry, 6th ed., Oxford University Press, New York, 1998

K. K. Mierzejewska, J. Trylska, J. Sadlej, J. Mol. Model. 18 (2012) 2727

Gaussian 09, Revision B.04, Gaussian, Inc., Pittsburgh, PA, 2009

H. F. Diercksen, ‎B. T. Sutcliffe, ‎A. Veillard, in Proceedings of the NATO Advanced Study Institute, 4–21 September, 1974, Ramsau, Germany

P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, 4th ed., Oxford University Press Inc., New York, 2005

I. N. Levine, Quantum Chemistry, 2nd ed., Academic Press, Waltham, MA, 1993.




DOI: https://doi.org/10.2298/JSC160721102E

Copyright (c) 2016 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)