Adsorption of strontium on different sodium enriched bentonites
Main Article Content
Abstract
Bentonites from three different deposits (Wyoming, Texas and Bogovina), with similar cation exchange capacities were sodium enriched and tested as adsorbents for Sr2+ ions in aqueous solutions. X-ray diffraction analysis confirmed successful Na-exchange. Textural properties of the bentonite samples were determined using low-temperature nitrogen physisorption method. Significant difference in textural properties between different sodium enriched bentonites was found. Adsorption was investigated with respect to adsorbent dosage, pH, contact time and initial Sr2+ ions concentration. The adsorption capacity increased with pH. In the pH range from 4-8.5 the amount of adsorbed Sr2+ was almost constant but 2-3 times smaller than at pH »11. Further experiments were carried out on unadjusted pH since the extreme alkaline conditions are environmentally hostile and inapplicable in real systems. The adsorption capacity of all investigated adsorbents toward Sr2+ ions was similar under investigated conditions, regardless of significant differences in specific surface area. It was shown and confirmed by Dubinin-Rasdushkevich model that cation exchange mechanism is the dominant mechanism of Sr2+ ions adsorption. Developed microporous structure contributed to the Sr2+ adsorption process. Adsorption kinetics obeyed the pseudo-second-order model. The isotherm data were best fitted with Langmuir isotherm model.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. R. Dojlido, G. A. Best, Chemistry of water and water pollution, Ellis Horwood Limited, Chichester, West Sussex, 1993. p. 75
S. Chegrouche, A. Mellah, M. Barkat, Desalination 235 (2009) 306
S. Yusan, S. Erenturk, World J. Nucl. Sci. Technol. 1 (2011) 6
A. Horr, Chemistry of strontium in natural water, U.S. Goverment. Prin. Off, Washington 1962. p. 4
A. Ahmadpour, M. Zabihi, M. Tahmasbi, T. Rohani Bastami, J. Hazard. Mater. 182 (2010) 552
S. Yusan, S. Erenturk, World J. Nucl. Sci. Technol. 1 (2011) 6
M.Torab-Mostaedi, A. Ghaemi, H. Ghassabzadeh, M. Ghannadi-Maragheh, Can. J. Chem. Eng. 89 (2011) 1247
H. N. Erten, S. Aksoyoglu, S. Hatipoglu, H. Göktürk, Radiochim. Acta 44/45 (1988) 147
T. Missana, M. Garcia-Gutierrez, U. Alonso, Phys. Chem. Earth 33 (2008) S156
A. Ebner, J. Ritter, J. Navratil, Ind. Eng. Chem. Res. 40 (2001) 1615
M. K. Uddin, Chem. Eng. J. 308 (2017) 438
Y. Bentahar, C. Hurel, K. Draoui, S. Khairoun, Appl. Clay Sci. 119 (2016) 385
M. Cruz-Guzman , R. Celis, M. C. Hermosin, W. C. Koskinen, E. A. Nater, J. Cornejo, Soil Sci. Soc. Am. J. 70 (2006) 215
R. Yua, S. Wanga, D. Wangb, J. Keb, X. Xinga, N. Kumadac, N.Kinomurac, Catal. Today 139 (2008) 135
L. Aloui, F. Ayari, A. Ben Othman, M. Trabelsi-AyadiInt, J. Engine. Appl. Sci. 2 (7) (2015) 33
F. Ayari, E. Srasra, M. Trabelsi-Ayadi, Desalination 185 (2005) 391
F. Bergaya, G. Lagaly, Developments in Clay Science – Volume 5A, Handbook of Clay Science, second ed., Elsevier Ltd, Amsterdam 2013
18. Clay Minerals Society, Source Clay Physical/Chemical Data, http://www.clays.org/Sourceclays.html (August 1, 2016.)
19. Z. Vuković, A. Milutinović-Nikolić, Lj. Rožić, A. Rosić, Z. Nedić, D. Jovanović, Clays Clay Miner. 54 (2006) 697
N. Jović-Jovičić, A. Milutinović-Nikolić, M. Žunić, Z. Mojović, P. Banković, I. Gržetić, D. Jovanović, J. Contam. Hydrol. 150 (2013) 1
T. Novaković, Lj. Rožić, S. Petrović, A. Rosić, Chem. Eng. J. 137 (2008) 436
Z. Vuković, A. Milutinović-Nikolić, J. Krstić, A. Abu-Rabi, T. Novaković, D. Jovanović, Mater. Sci. Forum 494 (2005) 339
N. Jović-Jovičić, A. Milutinović-Nikolić, M. Žunić, Z. Mojović, P. Banković, B. Dojčinović, A. Ivanović-Šašić, D. Jovanović, J. Serb. Chem. Soc. 79 (2014) 253
US Environmental Protection Agency, Method 9080 - Cation exchange capacity of soils (ammonium acetate), USEPA, Washington, DC (1986), https://www.epa.gov/sites/ /production/files/2015-12/documents/9080.pdf
Lj. Čerović, S. K. Milonjić, M. Todorović, M. Trtanj, Y. Pogozhev, Y. Blagoveschenskii, E. A. Levashov, Colloids Surfaces, A 297 (2007) 1
S. H. Gregg, K. S. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York, 1982, p. 41
F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids, Academic Press, London, 1999, p. 440
P. A. Webb, C. Orr, Analytical methods in fine particle technology, Micromeritics Instrument Corporation, Norcross, GA, USA, 1997, p. 53
S. J. Chipera, D. L. Bish, Clay Clay Miner. 49 (2001) 398
T. Hayakawa, M. Minase, K. I. Ujita, M. Ogawa , Clay Clay Miner. 64 (2016) 275
P. Cañizares, J. L. Valverde, M. R. Sun Kou, C. B. Molina, Micropor. Mesopor. Mat. 29 (1999) 267
G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41 (1998) 207
N. Jović-Jovičić, A. Milutinović-Nikolić, M. Žunić, Z. Mojović, P. Bankovića, I. Gržetić, D. Jovanović, J. Contam. Hydrol. 150 (2013) 1
Z. Sandić, A. Nastasović, N. Jović-Jovičić, A. Milutinović-Nikolić, D. Jovanović, Appl. Polym. Sci. 121 (2011) 234
S. Lagergren, "Zur theorie der sogenannten adsorption gelöster stoffe", Kungliga Svenska Vetenskapsakademiens, Handlingar 24 (1898) 1 (German)
Y. S. Ho, G. McKay, Chem. Eng. J. 70 (2) (1998) 115
I. J. Langmuir, J. Am. Chem. Soc. 40 (1918)1361
H. M. F. Freundlich, J. Phys. Chem. 57 (1906) 385
M. M. Dubinin, L. V. Radushkevich, Chem Zent. 1 (1947) 875.
M. Horsfall, A. I. Spiff, A. A. Abia, B. Kor. Chem. Soc. 25 (2004) 969
C. Y. Abasi, A. A. Abia, J. C. Igwe, Env. Res. J. 5 (2011) 104.
385.