Effect of biopolishing on structural degradation and physical properties of cellulose

Nisha Sankarraj, Gobi Nallathambi


Cellulase treatment on cotton fabric is ecofriendly way of biopolishing. In the present work, biopolishing of cotton fabric using free and immobilized cellulase under various treatment conditions have been carried out using Box-Behnken design and the physical properties like pilling grade, abrasion resistance and flexural rigidity were analyzed. The degradation of cotton fabric minimized and similar results were obtained for pilling and abrasion resistance of free and immobilized cellulase treatment. Higher flexural rigidity is the result of immobilized cellulase treated fabric when compared with the free cellulase. The degradation of amorphous region improves the crystallinity index of the treated samples. This shows that the amorphous region were more prone to enzymatic attack than the crystalline regions. The enzymatic treatment increase the accessible surface area of cotton fibre and it can be measured by Methylene blue absorption value. Methylene blue absorption of the fabric was more for free cellulase than the immobilized cellulase treated fabric. The change in hydrogen bond by the treatment was measured and analyzed by the Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR).


Cotton fabric, biopolishing, cellulase, immobilization, ATR-FTIR


R. Doshi, V. Shelke, Indian J. Fibre Text. Res. 26 (2001) 202

H. Noreen, M. A. Zia, S. Ali, T. Hussain, Indian J. Biotechnol. 13 (2014) 108

D. Saravanan, C. Dinesh, S. Karthikeyan, A. Vivekanandan, G. Nalankilli, T. Ramachandran, J. Appl. Polym. Sci. 6 (2009) 3402

N. Ortega, M. D. Busto, M. Perez-Mateos, Int. Biodeterior. Biodegr. 47 (2001) 7

A. K. Sarkar, J. N. Etters, J. Cotton Sci. 8 (2004) 254

L. Hao, R. Wang, L. Zhang, K. Fang, Y. Men, Z. Qi, P. Jiao, J. Tian, J. Liu, Cellulose. 21 (2014) 777

F. Dourado, M. Mota, H. Pala, F. M. Gama, Cellulose, 6 (1999) 265

L. Heikinheimo, A. Miettinen‐Oinonen, A. C. Paulo, J. Buchert, J. Appl. Polym. Sci. 7 (2003) 1917

A. C. Paulo, Carbohydr. polym. 3 (1998) 273

J. Andreaus, H. Azevedo, A. C. Paulo, J. mol. catal. B: Enzym. 1 (1999) 233

Y. H. Lee, L. T. Fan, Advances in Biochemical Engineering/Biotechnology, Springer Berlin, Heidelberg, Newyork, 1980

S.K. Chinta, S. M. Landage, K. Verma, Glob. J. Biosci. Biotechnol. 1 (2012) 287

H. B. M. Lenting, M. M. C. G. Warmoeskerken, J. biotechnol. 89 (2001) 227

M. Saleemuddin, In Thermal Biosensors, Bioactivity, Bioaffinitty, Springer Berlin, Heidelberg, Newyork, 1999

S. Nisha, N. Gobi, Biocatal. Biotransfor. 33 (2015) 81

L. Hao, R. Wang, L. Wang, K. Fang, J. Liu, Y. Men, Cellulose. 23 (2016) 929

N. Sathitsuksanoh, Z. Zhu, S. Wi Y. H. P. Zhang, Biotechnol. bioeng. 108 (2011) 521

R. S. Merkel, Methods for analyzing damage in textile materials, In Analytical methods for the textile laboratory, ed. J. W.Weaver. Research Triangle Park, American Association for Textile Chemists and Colorists, N.C, 1984

C. Kaewprasit, E. Hequet, N. Abidi, J. P. Gourlot, J. Cotton Sci. 2 (1998) 164

R. T. O'Connor, E. F. DuPré, D. Mitcham, Text. Res. J. 28 (1958) 382

M. L. Nelson, R. T. O'Connor. J. Appl. Polym. Sci. 8 (1964) 1311

A. A. M. A. Nada, S. Kamel, M. El-Sakhawy. Polym. Degrad. Stab. 70 (2000) 347

S. Park, R. A. Venditti, D. G. Abrecht, H. Jameel, J. J. Pawlak, J. M. Lee, J. Appl. Polym Sci. 103 (2007) 3833

E. Csiszar, K. Urbánszki, G. Szakacs, J. Mol. Catal B: Enzy. 11 (2001) 1065

V. Ribitsch, K. Stana‐Kleinschek, T. Kreze, S. Strnad, Macromol. Mat. Eng. 286 (2001) 648

I. C. Sharma, Indian J. Fibr. Text. Res. 23 (1998) 44.

DOI: https://doi.org/10.2298/JSC161123031S

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)