Optimization of vanadium oxide catalyst for oxidation of 3-methylpyridine into nicotinic acid

Pavel Vorobyev, Tatyana Mikhailovskaya, Olga Yugay, Lyudmila Saurambaeva, Anna Serebryanskaya, Nikolay Chukhno, Raya Kurmakyzy


Upon modification of V2O5 by SnO2 and ZrO2 an increase in activity and selectivity of a vanadium-oxide catalyst in vapor-phase oxidation of 3-methylpyridine into nicotinic acid is observed. It is shown that a promoting effect of SnO2 and ZrO2 is stipulated by an increase, under their effect, of proton affinity of vanadyl oxygen and a decrease in the enthalpy of deprotonation of the methyl group of the substrate, connected by a nitrogen atom with the Lewis acidic center (vanadium ion). The given characteristics are calculated by the quantum-chemical method of the Density Functional Theory. Modification of binary V2O5-SnO2 and V2O5-ZrO2-catalysts by TiO2 addition results in the further increase of vanadyl oxygen nucleophility and, as a consequence, an increase of catalytic activity and selectivity of the nicotinic acid formation. 


quantum-chemical method; oxidation; promoting effect; V2O5; SnO2; ZrO2

Full Text:

PDF (2,598 kB)


R. Chuck, Applied Catalysis A: General 280 (2005) 75

D. Kh. Sembaev, F. А. Ivanovskaya, Е. М. Guseinov, R. D. Chuck, (Lonza Ltd, CH; Institute of Chemical Sciences of the National Academy of the Republic Kazakhstan, KZ) Pat. USA 5,698,701 (1997)

P. Vorobyev, L. Saurambaeva, T. Mikhailovskaya, O. Yugay, A. Serebryanskaya, I. Shlygina, Russ. J. Appl. Chem. 87 (2014) 887

D. F. Heinz, W. Hoelderich, S. Krill, W. Boeck, K. Huthmachery, J. Catal. 192 (2000) 1

G. Ya. Popova, T. V. Andrushkevich, I. I. Zakharov, Yu. A. Chesalov, Kinet. Catal. 46 (2005) 217

H. F. Huang, B. C.Zhu, H. F. Lu, H. Y. Liu,Y. F. Chen, J. Chem. Eng. Chin. Univ. 3 (2004) 334

S. Järås, S. Lundin, J. appl. Chem. Biotechnol. 27 (1977) 499

T. Shishido, Z. Song, E. Kadowaki, Y. Wang, K. Takehira, Appl. Catal. A: General 239 (2003) 287

T. Shishido, J. Jpn. Pet. Inst. 54 (2011) 225

L. E. Orgel, Discuss. Faraday Soc. 26 (1958) 138

M. Witko, R. Tokarz, J. Haber, J. Mol. Catal. 66 (1991) 205

M. Witko, R. Tokarz, J. Haber, J. Mol. Catal. 66 (1991) 357

W. Koсh, M.C. Holthausen, Chemist’s Guide to Density Functional Theory. Ed. 2, Wiley-VCH, Weinheim, 2001

J. B. Foresman, A. Frish, Exploring Chemistry with Electronic Structures Methods. Ed. 2., Gaussian Inc., Pittssburg, 1996

W. M. H. Sachtler, G. J. H. Dorgelo, J. Fahrenfort, R. J. H. Voorhoeve, Rec. trav. chim. 89 (1970) 460

S. Yoshida, T. Murakami, K. Tarama, Bull. Inst. Chem. Res., Kyoto Univ. 51 (1973) 195

D. Kh. Sembaev, B. V. Suvorov, L. I. Saurambaeva, Kh. T. Suleimanov, Kinetika i kataliz (In Russian) 20 750 (1979)

D. Kh. Sembaev, T. P. Mikhailovskaya, R. Kurmakizy, P. B. Vorobyev, (A.B. Bekturov Institute of Chemical Sciences JSC), KZ Innov. Pat. 30237 (2015)

D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York and London, 1965.

DOI: https://doi.org/10.2298/JSC161220023z

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)