Low-temperature-synthesized RuO2 from acidic chloride solution for the electrode coating applications

Main Article Content

Gavrilo Šekularac
Sanja Eraković
Dušan Mijin
Vesna Pavelkić
Jasmina Stevanović
Vladimir Panić


For the preparation of RuO2 coatings on Ti substrate, the RuO2 was synthesized in acidic aqueous medium by simple one-step low temperature-co­ntrolled microwave (MW) irradiation. The physical composition of synthesized solid phase was analysed through particle size distribution (PSD), whereas the coating was investigated for its capacitive response and activity in oxygen evolution reaction (OER). The oxide phase was found highly polydisperse, with overlapped fractions within rather narrow particle size range and clear ten­dency toward agglomeration. The smallest particles and their best resolved fractions were synthesized at the temperature just above the boiling point of the reaction medium, and quite below the chloride-to-oxide conversion tempera­ture. Consequently, the highest OER activity was registered for RuO2/Ti anodes prepared from this sample, with strong indication of different oxide structure, with respect to the electrodes prepared from samples synthesized at higher temperatures. However, the coatings from high temperature samples have considerably higher capacitance than those synthesized at lower tempera­tures. These findings can be rather correlated to the MW temperature-depend­ent oxide structure than to different morphology analysed through PSD.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
G. Šekularac, S. Eraković, D. Mijin, V. Pavelkić, J. Stevanović, and V. Panić, “Low-temperature-synthesized RuO2 from acidic chloride solution for the electrode coating applications”, J. Serb. Chem. Soc., vol. 82, no. 6, pp. 695–709, Aug. 2017.


S. Trasatti, W. OGrady, in: H. Gerisher, C.W. Tobias (Eds.), Advances in Electro-chemistry and Electrochemical Engineering, Wiley, New York, 1981, p. 177

A. Cornell, F. Herlitz, in: Proceedings of the Fourth Kurt Schwabe Corrosion Sym-posium, Helsinki, Finland, 2004, p. 326

S. Trasatti, W. E. OGrady, in: Advances in Electrochemistry and Electrochemical Engineering, Vol. 13, H. Gerischer and P. Delahay, Eds., Interscience, New York, 1980, p. 177

S. Horacek, S. Puschaver, Chem. Eng. Progress 67 (1971) 71

A. Nidola, in: Electrodes of Conductive Metallic Oxides, Part B, S. Trasatti, Ed., Elsevier, Amsterdam, 1981, p. 627

S. Trasatti, in: Interfacial electrochemistry – theory, experiment and applications, A. Wieckowski, Ed., Marcel Dekker Inc., New York, 1999, p. 769

De Nora elettrodi network, 2009, http://www.lidaproducts.com, accessed May, 2009

B.Ž. Nikolić, V.V. Panić, in Encyclopedia of applied electrochemistry, G. Kreysa, K-I. Ota, R. F. Savinell, Eds., Springer, New York, 2014, p. 411

F. Herlitz, B. Hakansson, in: Proceedings of the Fourth Kurt Schwabe Corrosion, Symposium, Helsinki, Finland, 2004, p. 32

K. Darowicki, S. Janicki, Corr. Sci. 41 (1999) 1165

S.M.A. Shibli, V.S. Gireesh, S. George, Corr. Sci. 46 (2004) 819

E. OSullivan, J. White, J. Electrochem. Soc. 136 (1989) 2576

C.L.P.S. Zanta, A.R. De Andrade, J.F.C. Boodts, Electrochim. Acta 44 (1999) 3333

V.V. Panić, A.B. Dekanski, T.R. Vidaković, V.B. Mišković-Stanković, B.Ž. Jovanović, B.Ž. Nikolić, J. Solid State Electrochem. 9 (2005) 43

S. Trasatti, P. Kurzweil, Platinum Metals Rev. 38 (1994) 46

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Techno¬logical Applications, Kluwer Academic/Plenum Publishers, New York, 1999, p. 211

T. Jow, J. Zheng, J. Electrochem. Soc. 145 (1998) 49.

V. Panić, T. Vidaković, S. Gojković, A. Dekanski, B. Nikolić, Electrochim. Acta 48 (2003) 3805.

I.-H. Kim, J.-H. Kim, K.-B. Kim, Electrochem. Solid State Lett. 8 (2005) A369.

J. M. Hu, J. Q. Zhang, C. N. Cao, Int. J. Hydrogen Energy 29 (2000) 791

M. H. P. Santana, L. A. De Faria, J. F. C. Boodts, Electrochim. Acta 49 (2004) 1925

C. Comninellis, P.G.J. Vercesi, Appl. Electrochem. 21 (1991) 335

M. Yagi, E. Tomita, T.J. Kuwabara, Electroanal. Chem. 579 (2005) 83

Y. W. Jung, J. Lee, Y. Tak, Electrochem. Solid State Lett. 7 (2004) H5

P. S. Patil, R. W. Kawar, S. B. Sadale, Electrochim. Acta 50 (2005) 2527

V. Jovanović, A. Dekanski, P. Despotov, B. Nikolić, R.J. Atanasoski, Electroanal. Chem. 339 (1992) 147

S. Ardizzone, S. Trasatti, Adv. Colloid Interface Sci. 64 (1996) 173

N. Yoshinaga, W. Sugimoto, Y. Takasu, Electrochim. Acta 54 (2008) 566

A. A. F. Grupioni, E. Arashiro, T. A. F. Lassali, Electrochim. Acta 48 (2002) 407

R. K. Karlsson, A. Cornell, Chem. Rev. 116 (2016) 2982

A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold, Mater. Chem. Phys. 94 (2005) 226

A. De Oliveira-Sousa, M. A. S. Da Silva, S. A. S. Machado, L. A. Avaca, P. De Lima-

-Neto, Electrochim. Acta 45 (2000) 4467

P. S. Patil, R. K. Kawar, S. B. Sadale, Appl. Surf. Sci. 249 (2005) 367

M.X. Xia, C.B. Wang, Y.S. Gong, Q. Shen, L.M. Zhang, Rare Met. Mater. Eng. 35 (2006) 820

V. V. Panić, B. Ž. Nikolić, J. Serb. Chem. Soc. 73 (2008) 1083

L. Massot, P. Palau, A. Savall, P. Taxil, J. New Mater. Electrochem. Sys. 10 (2007) 123

L. Xu, Y. Xin, J. Wang, Electrochim. Acta 54 (2009) 1820

J.R. Osman, J.A. Crayston, A. Pratt, D.T. Richens, J. Sol Gel Sci. Technol. 46 (2008) 126

G. Šekularac, M. Košević, I. Drvenica, A. Dekanski, V. Panić, B. Nikolić, J. Solid State Electrochem. 20 (11) (2016) 3115

N. Božinović, B. A. Šolaja, I. M. Opsenica, J. Serb. Chem. Soc. 81 (11) (2016) 1225

A. M. Tasić, I. D. Sredović Ignjatović, Lj. M. Ignjatović, I. B. Anđelković, M. P. Antić, Lj. V. Rajaković, J. Serb. Chem. Soc. 81 (2016) 403

I. Povar, O. Spinu, J. Electrochem. Sci. Eng. 6 (2016) 123

J. P. Zheng, P. J. Cygan, T. R. Jow, J. Electrochem. Soc. 142 (1995) 2699

V. Panić, A. Dekanski, V. B. Mišković-Stanković, S. Milonjić, B. Nikolić, J. Electroanal. Chem. 579 (2005) 67

Y.-H. Fang, Z.-P. Liu, J. Am. Chem. Soc. 132 (2010) 18214.

Most read articles by the same author(s)