In vitro antimicrobial activity and cytotoxicity of nickel(II) complexes with different diamine ligands

Main Article Content

Nenad S Drašković
Biljana Dj Glišić
Sandra Vojnovic
Jasmina Nikodinovic-Runic
Miloš I Djuran

Abstract

Three diamines, 1,3-propanediamine (1,3-pd), 2,2-dimethyl-1,3-propanediamine (2,2-diMe-1,3-pd) and (±)-1,3-pentanediamine (1,3-pnd), were used for the synthesis of nickel(II) complexes 13, respectively, of the general formula [Ni(L)2(H2O)2]Cl2. The stoichiometries of the complexes were confirmed by elemental microanalysis, and their structures were elucidated by spectroscopic (UV–Vis and IR) and molar conductivity measurements. The complexes 13, along with NiCl2·6H2O and the diamine ligands, were evaluated against a panel of microbial strains that are associated with skin, wound, urinary tract and nosocomial infections. The obtained results revealed no sig­nificant activity of 13 against the investigated bacterial strains. On the other hand, they showed good antifungal activity against pathogenic Candida strains, with minimum inhibitory concentration (MIC) values in the range from 15.6 to 62.5 µg mL-1. The best anti-Candida activity was observed for complex 2 against C. parapsilosis, while the least susceptible to the effect of the com­plexes was C. krusei. The antiproliferative effect on normal human lung fibroblast cell line MRC-5 was also evaluated in order to determine the therapeutic potential of nickel(II) complexes 13. These complexes showed lower negative effects on the viability of the MRC-5 cell line than the clinically used nystatin and comparable selectivity indexes to that of this antifungal drug. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. S. Drašković, B. D. Glišić, S. Vojnovic, J. Nikodinovic-Runic, and M. I. Djuran, “In vitro antimicrobial activity and cytotoxicity of nickel(II) complexes with different diamine ligands”, J. Serb. Chem. Soc., vol. 82, no. 4, pp. 289–398, May 2017.
Section
Inorganic Chemistry

References

E. Alessio, Bioinorganic Medicinal Chemistry, Wiley-VCH, Weinheim, 2011

N. D. Savić, D. R. Milivojevic, B. Đ. Glišić, T. Ilic-Tomic, J. Veselinovic, A. Pavic, B. Vasiljevic, J. Nikodinovic-Runic, M. I. Djuran, RSC Adv. 6 (2016) 13193

M. A. Pfaller, S. A. Messer, G. J. Moet, R. N. Jones, M. Castanheira, Int. J. Antimicrob. Agents 38 (2011) 65

J. C. Sardi, L. Scorzoni, T. Bernardi, A. M. Fusco-Almeida, M. J. Mendes Giannini, J. Med. Microbiol. 62 (2013) 10

N. E. Dixon, C. Gazzola, R. L. Blakeley, B. Zerner, J. Am. Chem. Soc. 97 (1975) 4131

C. Tserkezidou, A. G. Hatzidimitriou, G. Psomas, Polyhedron 117 (2016) 184

R. R. Crichton, Biological Inorganic Chemistry: An Introduction, Elsevier, Amsterdam, The Netherlands, 2003

D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin, R. C. Santore, Environ. Toxicol. Chem. 20 (2001) 2383

Y. Chervona, A. Arita, M. Costa, Metallomics 4 (2012) 619

J. P. Thyssen, A. Linneberg, T. Menné, J. D. Johansen, Contact Dermatitis 57 (2007) 287

G. Morgant, N. Bouhmaida, L. Balde, N. E. Ghermani, J. d'Angelo, Polyhedron 25 (2006) 2229

P. Bombicz, E. Forizs, J. Madarasz, A. Deak, A. Kalman, Inorg. Chim. Acta 315 (2001) 229

K. C. Skyrianou, E. K. Efthimiadou, V. Psycharis, A. Terzis, D. P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 103 (2009) 1617

K. Alomar, A. Landreau, M. Allain, G. Bouet, G. Larcher, J. Inorg. Biochem. 126 (2013) 76

I. Ramírez-Macías, C. R. Maldonado, C. Marín, F. Olmo, R. Gutiérrez-Sánchez, M. J. Rosales, M. Quirós, J. M. Salas, M. Sánchez-Moreno, J. Inorg. Biochem. 112 (2012) 1

K. C. Skyrianou, F. Perdih, A. N. Papadopoulos, I. Turel, D. P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 105 (2011) 1273

P. Sathyadevi, P. Krishnamoorthy, E. Jayanthi, R. R. Butorac, A. H. Cowley, N. Dharmaraj, Inorg. Chim. Acta 384 (2012) 83

F. Bisceglie, S. Pinelli, R. Alinovi, M. Goldoni, A. Mutti, A. Camerini, L. Piola, P. Tarasconi, G. Pelosi, J. Inorg. Biochem. 140 (2014) 111

S. Koner, A. Ghosh, C. Pariya, D. Das, H. Kikuchi, K.-I. Okamoto, R. Ikeda, J. Mol. Struct. 345 (1995) 265

C.-H. Kim, S.-G. Lee, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 58 (2002) 421

I. O. Fritsky, J. Świątek-Kozłowska, A. Dobosz, T. Yu. Sliva, N. M. Dudarenko, Inorg. Chim. Acta 357 (2004) 3746

S. Chattopadhyay, P. Chakraborty, M. G. B. Drew, A. Ghosh, Inorg. Chim. Acta 362 (2009) 502

M. B. Hansen, S. E. Nielsen, K. Berg, J. Immunol. Methods 119 (1989) 203

R. Olar, G. V. Scaeteanu, I. D. Vlaicu, L. Marutescu, M. Badea, J. Therm. Anal. Calorim. 118 (2014) 1195

D. D. Radanović, U. Rychlewska, B. Warżajtis, M. S. Cvijović, M. Dj. Dimitrijević, M. I. Djuran, Polyhedron 26 (2007) 4799

L. K. Thompson, T. C. Woon, D. B. Murphy, E. J. Gabe, F. L. Lee, Y. Le Page, Inorg. Chem. 24 (1985) 4719

S. Chattopadhyay, P. Chakraborty, M. G. B. Drew, A. Ghosh, Inorg. Chim. Acta 362 (2009) 502

M. Sneed, J. Maynard, General Inorganic Chemistry, New York, 1942

A. K. Mishra, N. K. Kaushik, Spectrochim. Acta A 69 (2008) 842

S. Yano, S. Inoue, R. Nouchi, K. Mogami, Y. Shinohara, Y. Yasuda, M. Kato, T. Tanase, T. Kakuchi, Y. Mikata, T. Suzuki, Y. Yamamoto, J. Inorg. Biochem. 69 (1998) 15

I. Ali, W. A. Wani, A. Khan, A. Haque, A. Ahmad, K. Saleem, N. Manzoor, Microb. Pathogenesis 53 (2012) 66.

Most read articles by the same author(s)