Mechanistic, energetic and structural studies of single-walled carbon nanotubes functionalized with penicillamine
Main Article Content
Abstract
Using the density functional theory, the possible non-covalent interactions and six mechanisms of covalent functionalization of the drug penicillamine with functionalized carbon nanotubes (CNT) were investigated. Quantum molecular descriptors of the non-covalent configurations were studied. It was determined that binding of the drug penicillamine with functionalized CNT is thermodynamically viable. COOH functionalized CNT (NTCOOH) has more binding energy than COCl functionalized CNT (NTCOCl) and could act as a favorable system for penicillamine drug delivery within biological and chemical systems (non-covalent). NTCOOH and NTCOCl can bond to the NH2, OH and SH groups of penicillamine through OH (COOH mechanism) and Cl (COCl mechanism) groups, respectively. The activation energies, activation enthalpies and activation Gibbs energies of six pathways were calculated and compared with each other. The activation parameters related to the COOH mechanism are higher than those related to the COCl mechanism and therefore, the COCl mechanism is suitable for covalent functionalization. These results could be generalized to other similar drugs.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
G. D. Pennock, W. S. Dalton, W. R. Roeske, C. P. Appleton, K. Mosley, P. Plezia, T. P. Miller, S. E. Salmon, J. Natl. Cancer Inst. 83 (1991) 105
C. Lindley, J. S. McCune, T. E. Thomason, D. Lauder, A. Sauls, S. Adkins, W. T. Sawyer, Cancer Pract. 7 (1999) 59
S. N. Marinković, J. Serb. Chem. Soc. 73 (2008) 891
U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, S. O. Kim, Adv. Mater. 26 (2014) 40
H. Yaghoubian, H. Karimi-Maleh, M. A. Khalilzadeh, F. Karimi, J. Serb. Chem. Soc. 74 (2009) 1443
C. Rungnim, U. Arsawang, T. Rungrotmongkol, S. Hannongbua, Chem. Phys. Lett. 550 (2012) 99
M. Adeli, R. Soleyman, Z. Beiranvand, F. Madani, Chem. Soc. Rev. 42 (2013) 5231
R. V. Mundra, X. Wu, J. Sauer, J. S. Dordick, R. S. Kane, Curr. Opin. Biotechnol. 28 (2014) 25
M. Karimi, N. Solati, A. Ghasemi, M. A. Estiar, M. Hashemkhani, P. Kiani, E. Mohamed, A. Saeidi, M. Taheri, P. Avci, Expert Opin. Drug Delivery 12 (2015) 1089
H. Zhang, L. Hou, X. Jiao, Y. Ji, X. Zhu, H. Li, X. Chen, J. Ren, Y. Xia, Z. Zhang, Curr. Pharm. Biotechnol. 14 (2014) 1105
S. Unnati, R. Shah, Int. J. Pharm. Technol. 3 (2011) 927
B. S. Wong, S. L. Yoong, A. Jagusiak, T. Panczyk, H. K. Ho, W. H. Ang, G. Pastorin, Adv. Drug Delivery Rev. 65 (2013) 1964
Y. Lin, L. F. Allard, Y. P. J. Sun, Phys. Chem., B 108 (2004) 3760
E. A. Gad, J. H. Al-Fahemi, K. S. Khairou, J. Comput. Theor. Nanosci. 11 (2014) 404
H. Yahyaei, M. Monajjemi, H. Aghaie, K. Zare, J. Comput. Theor. Nanosci. 10 (2013) 2332
C. M. Chang, H. L. Tseng, A. de Leon, A. Posada-Amarillas, A. F. Jalbout, J. Comput. Theor. Nanosci. 10 (2013) 521
S. Rahimi‐Razin, V. Haddadi‐Asl, M. Salami‐Kalajahi, F. Behboodi‐Sadabad, H. Roghani‐Mamaqani, Int. J. Chem. Kinet. 44 (2012) 555
M. Prato, K. Kostarelos, A. Bianco, Acc. Chem. Res. 41 (2007) 60
T. M. Allen, P. R. Cullis, Science 303 (2004) 1818
D. Tomalia, L. Reyna, S. Svenson, Biochem. Soc. Trans. 35 (2007) 61
E. Flahaut, in Carbon Nanotubes for Biomedical Applications, Springer, Berlin, 2011, p. 211
K. Ajima, M. Yudasaka, T. Murakami, A. Maigné, K. Shiba, S. Iijima, Mol. Pharm-aceutics 2 (2005) 475
J. Peisach,W. Blumberg, Mol. Pharmacol. 5 (1969) 200
A. Camp, J. Rheumatol. 7 (1980) 103
S. Wadhwa,R. J. Mumper, Cancer Lett. 337 (2013) 8
A. Khorsand, S. Jamehbozorgi, R. Ghiasi, M. Rezvani, Phys. E (Amsterdam, Neth.) 72 (2015) 120
Y. B. Zheng, B. Kiraly, T. J. Huang, Nanomedicine (London, U.K.) 5 (2010) 1309
V. Linko, A. Ora, M. A. Kostiainen, Trends Biotechnol. 33 (2015) 586
W. Szymański, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 113 (2013) 6114
C. Rungnim, T. Rungrotmongkol, S. Hannongbua, H. Okumura, J. Mol. Graphics Modell. 39 (2013) 183
A. D. Becke, Phys. Rev., A 38 (1988) 3098
A. D. Becke, J. Chem. Phys. 98 (1993) 5648
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 37 (1988) 785
Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009
S. Hooman Vahidi, A. Morsali, S. A. Beyramabadi, Comput. Theor. Chem. 994 (2012) 41
A. Akbari, F. Hoseinzade, A. Morsali, S. Ali Beyramabadi, Inorg. Chim. Acta 394 (2013) 423
A. Morsali, F. Hoseinzade, A. Akbari, S. A. Beyramabadi, R. Ghiasi, J. Solution Chem. 42 (2013) 1902
S. Mohseni, M. Bakavoli, A. Morsali, Prog. React. Kinet. Mech. 39 (2014) 89
S. A. Beyramabadi, H. Eshtiagh-Hosseini, M. R. Housaindokht, A. Morsali, Organo-metallics 27 (2007) 72
A. Gharib, A. Morsali, S. Beyramabadi, H. Chegini, M. N. Ardabili, Prog. React. Kinet. Mech. 39 (2014) 354
A. Morsali, Int. J. Chem. Kinet. 47 (2015) 73
M. N. Ardabili, A. Morsali, S. A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermed. 41 (2015) 5389
M. Domínguez, V. G. Machado, L. G. Nandi, M. C. Rezende, P. Silva, Int. J. Chem. Kinet. 47 (2015) 803
R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449
J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027
J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 3rd ed., Gaussian, Inc., Wallingford, CT, 2015
S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Struct.: THEOCHEM 461 (1999) 1
R. G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215
T. Lin, V. Bajpai, T. Ji, L. Dai, Aust. J. Chem. 56 (2003) 635