Mechanistic, energetic and structural studies of single-walled carbon nanotubes functionalized with penicillamine

Main Article Content

Hosein Shaki
Ali Morsali
http://orcid.org/0000-0002-8569-2442
Heidar Raissi
Mohammad Hakimi
S. Ali Beyramabadi

Abstract

Using the density functional theory, the possible non-covalent inter­actions and six mechanisms of covalent functionalization of the drug penicil­lamine with functionalized carbon nanotubes (CNT) were investigated. Quan­tum molecular descriptors of the non-covalent configurations were studied. It was determined that binding of the drug penicillamine with functionalized CNT is thermodynamically viable. COOH functionalized CNT (NTCOOH) has more binding energy than COCl functionalized CNT (NTCOCl) and could act as a favorable system for penicillamine drug delivery within biological and chemical systems (non-covalent). NTCOOH and NTCOCl can bond to the NH2, OH and SH groups of penicillamine through OH (COOH mechanism) and Cl (COCl mechanism) groups, respectively. The activation energies, activ­ation enthalpies and activation Gibbs energies of six pathways were cal­culated and compared with each other. The activation parameters related to the COOH mechanism are higher than those related to the COCl mechanism and therefore, the COCl mechanism is suitable for covalent functionalization. These results could be generalized to other similar drugs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. Shaki, A. Morsali, H. Raissi, M. Hakimi, and S. A. Beyramabadi, “Mechanistic, energetic and structural studies of single-walled carbon nanotubes functionalized with penicillamine”, J. Serb. Chem. Soc., vol. 83, no. 2, pp. 167–179, Mar. 2018.
Section
Theoretical Chemistry

References

G. D. Pennock, W. S. Dalton, W. R. Roeske, C. P. Appleton, K. Mosley, P. Plezia, T. P. Miller, S. E. Salmon, J. Natl. Cancer Inst. 83 (1991) 105

C. Lindley, J. S. McCune, T. E. Thomason, D. Lauder, A. Sauls, S. Adkins, W. T. Sawyer, Cancer Pract. 7 (1999) 59

S. N. Marinković, J. Serb. Chem. Soc. 73 (2008) 891

U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, S. O. Kim, Adv. Mater. 26 (2014) 40

H. Yaghoubian, H. Karimi-Maleh, M. A. Khalilzadeh, F. Karimi, J. Serb. Chem. Soc. 74 (2009) 1443

C. Rungnim, U. Arsawang, T. Rungrotmongkol, S. Hannongbua, Chem. Phys. Lett. 550 (2012) 99

M. Adeli, R. Soleyman, Z. Beiranvand, F. Madani, Chem. Soc. Rev. 42 (2013) 5231

R. V. Mundra, X. Wu, J. Sauer, J. S. Dordick, R. S. Kane, Curr. Opin. Biotechnol. 28 (2014) 25

M. Karimi, N. Solati, A. Ghasemi, M. A. Estiar, M. Hashemkhani, P. Kiani, E. Mohamed, A. Saeidi, M. Taheri, P. Avci, Expert Opin. Drug Delivery 12 (2015) 1089

H. Zhang, L. Hou, X. Jiao, Y. Ji, X. Zhu, H. Li, X. Chen, J. Ren, Y. Xia, Z. Zhang, Curr. Pharm. Biotechnol. 14 (2014) 1105

S. Unnati, R. Shah, Int. J. Pharm. Technol. 3 (2011) 927

B. S. Wong, S. L. Yoong, A. Jagusiak, T. Panczyk, H. K. Ho, W. H. Ang, G. Pastorin, Adv. Drug Delivery Rev. 65 (2013) 1964

Y. Lin, L. F. Allard, Y. P. J. Sun, Phys. Chem., B 108 (2004) 3760

E. A. Gad, J. H. Al-Fahemi, K. S. Khairou, J. Comput. Theor. Nanosci. 11 (2014) 404

H. Yahyaei, M. Monajjemi, H. Aghaie, K. Zare, J. Comput. Theor. Nanosci. 10 (2013) 2332

C. M. Chang, H. L. Tseng, A. de Leon, A. Posada-Amarillas, A. F. Jalbout, J. Comput. Theor. Nanosci. 10 (2013) 521

S. Rahimi‐Razin, V. Haddadi‐Asl, M. Salami‐Kalajahi, F. Behboodi‐Sadabad, H. Roghani‐Mamaqani, Int. J. Chem. Kinet. 44 (2012) 555

M. Prato, K. Kostarelos, A. Bianco, Acc. Chem. Res. 41 (2007) 60

T. M. Allen, P. R. Cullis, Science 303 (2004) 1818

D. Tomalia, L. Reyna, S. Svenson, Biochem. Soc. Trans. 35 (2007) 61

E. Flahaut, in Carbon Nanotubes for Biomedical Applications, Springer, Berlin, 2011, p. 211

K. Ajima, M. Yudasaka, T. Murakami, A. Maigné, K. Shiba, S. Iijima, Mol. Pharm-aceutics 2 (2005) 475

J. Peisach,W. Blumberg, Mol. Pharmacol. 5 (1969) 200

A. Camp, J. Rheumatol. 7 (1980) 103

S. Wadhwa,R. J. Mumper, Cancer Lett. 337 (2013) 8

A. Khorsand, S. Jamehbozorgi, R. Ghiasi, M. Rezvani, Phys. E (Amsterdam, Neth.) 72 (2015) 120

Y. B. Zheng, B. Kiraly, T. J. Huang, Nanomedicine (London, U.K.) 5 (2010) 1309

V. Linko, A. Ora, M. A. Kostiainen, Trends Biotechnol. 33 (2015) 586

W. Szymański, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 113 (2013) 6114

C. Rungnim, T. Rungrotmongkol, S. Hannongbua, H. Okumura, J. Mol. Graphics Modell. 39 (2013) 183

A. D. Becke, Phys. Rev., A 38 (1988) 3098

A. D. Becke, J. Chem. Phys. 98 (1993) 5648

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 37 (1988) 785

Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009

S. Hooman Vahidi, A. Morsali, S. A. Beyramabadi, Comput. Theor. Chem. 994 (2012) 41

A. Akbari, F. Hoseinzade, A. Morsali, S. Ali Beyramabadi, Inorg. Chim. Acta 394 (2013) 423

A. Morsali, F. Hoseinzade, A. Akbari, S. A. Beyramabadi, R. Ghiasi, J. Solution Chem. 42 (2013) 1902

S. Mohseni, M. Bakavoli, A. Morsali, Prog. React. Kinet. Mech. 39 (2014) 89

S. A. Beyramabadi, H. Eshtiagh-Hosseini, M. R. Housaindokht, A. Morsali, Organo-metallics 27 (2007) 72

A. Gharib, A. Morsali, S. Beyramabadi, H. Chegini, M. N. Ardabili, Prog. React. Kinet. Mech. 39 (2014) 354

A. Morsali, Int. J. Chem. Kinet. 47 (2015) 73

M. N. Ardabili, A. Morsali, S. A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermed. 41 (2015) 5389

M. Domínguez, V. G. Machado, L. G. Nandi, M. C. Rezende, P. Silva, Int. J. Chem. Kinet. 47 (2015) 803

R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449

J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027

J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 3rd ed., Gaussian, Inc., Wallingford, CT, 2015

S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Struct.: THEOCHEM 461 (1999) 1

R. G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215

T. Lin, V. Bajpai, T. Ji, L. Dai, Aust. J. Chem. 56 (2003) 635