A DFT investigation of the Diels–Alder reaction of ethyl propiolate to the cage-annulated hexacyclo[,6.06,13.08,12.010,14]hexadeca-2,4-diene-7,16-dione

Abdurrahman Atalay, Riza Abbasoglu


The Diels–Alder (DA) reaction between the cage-annulated diene hexacyclo[,6.06,13.08,12.010,14]hexadeca-2,4-diene-7,16-dione (HHDD) with a cyclohexa-1,3-diene moiety and ethyl propiolate (EP) dienophile was investigated by the DFT method at the B3LYP/6-31+G(d,p) level to elucidate the mechanism and regioselectivity features of the reaction. The geometrical and electronic structures of the caged diene HHDD and EP were studied at B3LYP/6-31+G(d,p) level. In order to identify facial- and regio-selectivity of the DA reaction of HHDD and EP, the frontier molecular orbital (FMO) inter­actions of the reactants according to the FMO theory, and the molecular elec­tro­static potential map of HHDD were examined. The potential energy surface (PES) of the related DA reaction was calculated, and optimizations of trans­ition states and of products corresponding to critical points on the PES were performed at the B3LYP/6-31+G(d,p), and their configurations were deter­mined. In addition, the thermodynamic and kinetic parameters of each possible cycloaddition reaction were calculated using the B3LYP/6-31+G(d,p) method to determine whether the reaction occurs under thermodynamic or kinetic con­trol. The thermochemical results showed that the related DA cycloaddition pro­ceeds under kinetic control, and the activation energies of syn cycloadditions are clearly lower than that of anti cycloadditions. The theoretical calculations are in good agreement with experimental results.


DFT calculations; Diels-Alder cycloadditions; cage-fused dienes; π-facial selectivity

Full Text:

PDF (3,188 kB)


T. C. Chou, P. C. Hong, Y. F. Wu, W. Y. Chang, C. T. Lin, Tetrahedron 52 (1996) 6325

G. Mehta, R. Uma, Tetrahedron Letters 36 (1995) 4873

J. M. Coxon, S. T. Fong, D. Q. McDonald, P. J. Steel, Tetrahedron Lett. 34 (1993) 163

W. D. Fessner, C. Grund, H. Prinzbach, Tetrahedron Lett. 32 (1991) 5935

J. M. Coxon, R. G. A. R. Maclagan, D. Q. McDonald, P. J. Steel, J. Org. Chem. 56 (1991) 2542

J. M. Coxon, S. T. Fong, K. Lundie, D. Q. McDonald, P. J. Steel, A. P. Marchand, F. Zaragoza, U. R. Zope, D. Rajagopal, S. G. Bott, W. H. Watson, R. P. Kashyap, Tetrahedron 50 (1994) 13037

A. S. Kushner, Tetrahedron Letters 12 (1971) 3275

B. Pandey, U. R. Zope, N. R. Ayyangar, J. Chem. Soc.,Chem. Commun. 2 (1990) 107

a) A. P. Marchand, H. S. Chong, B. Ganguly, R. Shukla, E. Z. Dong, A. Hazlewood, T. D. Power, W. H. Watson, S. G. Bott, Tetrahedron 57 (2001) 8629 b) A. P. Marchand, H.-S. Chong, B. Ganguly, J. M. Coxon, Croatica Chemica Acta 73 (2000) 1027

L. Salem, J. Am. Chem. Soc. 90 (1968) 543

L. Salem, J. Am. Chem. Soc. 90 (1968) 553

K. Fukui, Acc. Chem. Res. 4 (1971) 57

K. N. Houk, Acc. Chem. Res. 8 (1975) 361

K. N. Houk, in Pericyclic Reactions, A.P. Marchand, R.E. Lehr, (Eds.) Academic Press, New York, 1977

K. Fukui, Angew. Chem., Int. Ed. 21 (1982) 801

D. G. Truhlar, A. J. Kuppermann, J. Am. Chem. Soc. 93 (1971) 1840

R. Bonaccorsi, E. Scrocco, J. Tomasi, J. Chem. Phys. 52 (1970) 5270

A. D. Becke, J. Chem. Phys. 98 (1993) 5648

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650

C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 90 (1989) 2154

C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 94 (2002) 5523

M. T. Cances, V. Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997) 3032

S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117

V. Barone, M. Cossi, J. Tomassi, J. Chem. Phys. 107 (1997) 3210

Gaussian 03, Revision B.03, Gaussian Inc., Pittsburgh PA, 2003

G. Klopman, J. Am. Chem. Soc. 90 (1968) 223

L. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, London, 1977

T. Lipinska, Tetrahedron 61 (2005) 8148

A. E. Hayden, J. de Chancie, A. H. George, M. Dai, M. Yu, S. J. Danishefsky, K. N. Houk, J. Org. Chem. 74 (2009) 6770

J. S. Murray, D. Yepes, P. Jaque, P. Politzer, Comput. Theor. Chem. 1053 (2015) 270.

DOI: https://doi.org/10.2298/JSC171113035A

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)