Elaboration of nanostructured polyurethane foams / OMMT using a twin-screw extruder in counter-rotating mode

Yasmine Mahmoud, Zitouni Safidine, Hichem Zeghioud


In this work, we propose a new elaboration method of nanostructured foam polyurethane/Organo-modified Montmorillonite (PUR/OMMT) by in situ polymerization. The twin-screw extruder in contra-rotative mode combined with reaction injection moulding (RIM) as polymerization process was used. The blended polyols, copolymer polyol (CPP) were included between the OMMT layers via the twin-screw extruder. Both formulation of the PUR and inter-foliar distance in the montmorillonite (MMT) have been optimized. The effect of some parameters such as OMMT content and catalyst (triethylenediamine for PUR 3 and triethylenediamine+diamino-1,2 propane for PUR 4) was also undertaken. The synthesized materials (OMMT, PUR and PUR/OMMT) were characterized by different methods; Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscope (SEM). The results of evaluation tests like flammability and the tensile for PUR 3+OMMT foams revealed that the optimum properties were obtained for PUR 3+2%OMMT. The PUR 4 foam admits mechanical and flame-retardant properties better than the PUR 3 (r = -NCO/-OH = 1.15) foam. However, the PUR 4 + 2 % OMMT formula exhibits the most delayed flame diffusion and pronounced rigidity.


Nnanocomposite; PUR rigid foam; OMMT; flame retardant


X. Cao, L. J. Lee, T. Widya, C. Macosko, Polymer 46 (2005) 775 (https://doi.org/-10.1016/j.polymer.2004.11.028)

L. Madaleno, R. Pyrz, A. Crosky, L-R. Jensen, J. C. M. Rauhe, V. Dolomanova, A. M. M. V. de B. Timmons, J. J. C. Pinto, J. Norman, Composites 44 (2013) 1 (https://doi.org/-10.1016/j.compositesa.2012.08.015)

S. Estravís, J. Tirado-Mediavilla, M. Santiago-Calvo, J. L. Ruiz-Herrero, F. Villafañe, M. Á. Rodríguez-Pérez, Eur. Polym. J. 80 (2016) 1. (http://dx.doi.org/10.1016/j.eu-rpolymj.2016.04.026)

G. Sung, J. W. Kim, J. H. Kim, J. Ind. Eng. Chem. 44 (2016) 99 (http://dx.doi.org/-10.1016/j.jiec.2016.08.014)

P. S. Khobragade, D. P. Hansora, J. B. Naik, A. Chatterjee, Polym. Degrad. Stab. 130 (2016) 194. (https://doi.org/10.1016/j.polymdegradstab.2016.06.001 ).

Y. Gui, X. Liu, Y. Tian, N. Ding, Z. Wang, Colloids Surf. A 414 (2012) 274. (https://doi.org/10.1016/j.colsurfa.2012.08.028 ).

L. Zhang, M. Zhang, Y. Zhou, L. Hu, polym. Degrad. Stab. 98 (2013) 2784 (https://doi.org/10.1016/j.polymdegradstab.2013.10.015)

X. Zheng, G. Wang, W. Xu, Polym. Degrad. Stab. 101 (2014), 32 (https://doi.org/-10.1016/j.polymdegradstab.2014.01.015)

N. Gama, L. C. Costa, V. Amaral, A. Ferreira, A. B-Timmons, Compos. Sci. Technol. 138 (2017) 24 (http://dx.doi.org/10.1016/j.compscitech.2016.11.007)

L. Zhang, M. Zhang, Y. Zhou, L. Hu, Polym. Degrad. Stab. 98 (2013) 2784 (http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.015)

W. Xi, L. Qian, Y. Chen, J. Wang, X. Liu, Polym. Degrad. Stab. 122 (2015) 36. (http://dx.doi.org/10.1016/j.polymdegradstab.2015.10.013)

W. Xi, L. Qian, Z. Huang, Y. Cao, L. Li, Polym. Degrad. Stab. 130 (2016) 97 (http://dx.doi.org/10.1016/j.polymdegradstab.2016.06.003)

R. Sonnier, B. Otazaghine, A. Viretto, G. Apolinario, P. Ienny, Eur. Polym. J. 68 (2015) 313 (http://dx.doi.org/10.1016/j.eurpolymj.2015.05.005)

F. Salaün, M. Lewandowski, I. Vroman, G. Bedek, S. Bourbigot, Polym. Degrad. Stab. 96 (2011) 131 (https://doi.org/10.1016/j.polymdegradstab.2010.10.009)

L. Gao, G. Zheng, Y. Zhou, L. Hu, G. Feng, M. Zhang, Polym. Degrad. Stab. 101 (2014) 92 (https://doi.org/10.1016/j.polymdegradstab.2013.12.025)

A. Lorenzetti, S. Besco, D. Hrelja, M. Roso, E. Gallo, B. Schartel, M. Modesti, Polym. Degrad. Stab. 98 (2013) 2366 (https://doi.org/10.1016/j.polymdegradstab.2013.08.002)

H-B. Chen, Y-Z. Wang, M. S-Soto, D. A. Schiraldi, Polymer 53 (2012) 5825 (https://doi.org/10.1016/j.polymer.2012.10.029)

W. Xu, G. Wang, X. Zheng, Polym. Degrad. Stab. 111 (2015) 142 (https://doi.org/-10.1016/j.polymdegradstab.2014.11.008)

C. E. Corcionea, P. Prinari, D. Cannoletta, G. Mensitieri, A. Maffezzoli, Int. J. Adhes. Adhes. 28 (2008) 91 (https://doi.org/10.1016/j.ijadhadh.2006.12.004)

J. Pavličević, M. Špirkova, A. Strachota, K. M. Szecsenyic, N. Lazić, J. B-Simendić, Thermochim Acta 509 (2010) 73 (https://doi.org/10.1016/j.tca.2010.06.005)

F. Cao, S.C. Jana, Polymer 48 (2007) 3790 (https://doi.org/10.1016/j.po¬ly-mer.2007.04.027)

Ł. Piszczyk, M. Strankowski, M. Danowska, J. T. Haponiuk, M. Gazda, Eur. Polym. J. 48 (2012) 1726 (https://doi.org/10.1016/j.eurpolymj.2012.07.001)

J. Xiong, Z. Zheng, H. Jiang, S. Ye, X. Wang, Composites 38 (2007) 132 (https://doi.org/10.1016/j.compositesa.2006.01.014)

N. Sarier, E. Onder, Thermochim Acta 510 (2010) 113 (https://doi.org/10.1016/-j.tca.2010.07.004)

B. Yıldız, M. O. Seydibeyoglu, F. S. Guner, Polym. Degrad. Stab. 94 (2009) 1072 (https://doi.org/10.1016/j.polymdegradstab.2009.04.006)

M. Sonnenschein, B. L. Wendt, A. K. Schrock, J-M. Sonney, A. J. Ryan, Polymer 49 (2008) 934 (https://doi.org/10.1016/j.polymer.2008.01.008)

W. Wang, Y. Pan, H. Pan, W. Yang, K. M. Liew, L. Song, Y. Hu, Compo. Sci. Technol. 123 (2016) 212 (https://doi.org/10.1016/j.compscitech.2015.12.014)

J-C. Yang, Z-J. Cao, Y-Z. Wang, D. A. Schiraldi, Polymer 66 (2015) 86 (https://doi.org/10.1016/j.polymer.2015.04.022)

Y. Qian, W. Liu, Y. T. Park, C.I. Lindsay, R. Camargo, C.W. Macosko, A. Stein, Polymer 53 (2012) 5060 (http://dx.doi.org/10.1016/j.polymer.2012.09.008)

L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, W. Fan, Polym. Degrad. Stab. 87 (2005) 111 (https://doi.org/10.1016/j.polymdegradstab.2004.07.012)

N. Pauzi, R. A. Majid, M.H. Dzulkifli, M.Y. Yahya, Composites 67 (2014) 521 (http://dx.doi.org/10.1016/j.compositesb.2014.08.004)

G. Verma, A. Kaushika, A.K. Ghosh, Prog. Org. Coat. 99 (2016) 282 (http://dx.doi.org/10.1016/j.porgcoat.2016.06.001)

J. Xiong, Y. Liu, X. Yang, X. Wang, Polym. Degrad. Stab. 86 (2004) 549 (http://dx.doi.org/10.1016/j.polymdegradstab.2004.07.001)

F. J. Leij, J. H. Dane, Analytical and numerical solutions of the transport equation for an exchangeable solute in a layred soil, Lowell T. Frobish, aubum university, Alabama, 1989. (https://aurora.auburn.edu/bitstream/handle/11200/1542/0696AGRO.pdf?sequence=1&isAllowed=y )

S. Lv, W. Zhou, S. Li, W. Shi, Eur. Polym. J. 44 (2008) 1613. (https://doi.org/10.1016/¬j.eurpolymj.2008.04.005)

J. M. Yeh, C. T. Yao, C. F. Hsieh, L. H. Lin, P. L. Chen, J. C. Wuc, H. C. Yang, C. P. Wua, Eur. Polym. J. 44 (2008) 3046 (https://doi.org/10.1016/j.eurpolymj.2008.05.037)

H. Moustafa, H. Galliard, L. Vidal, A. Dufresne, Eur. Polym. J. (2016) (http://dx.doi.org/¬10.1016/j.eurpolymj.2016.12.009)

M. El Achaby, H. Ennajih, F.Z. Arrakhiz, A. El Kadib, R. Bouhfid, E. Essassi, A. Qais, Composites 51 (2013) 310 (http://dx.doi.org/10.1016/j.compositesb.2013.03.009)

Ö. Eğri, K. Salimi, S. Eğri, E. PișKin, Z. M. O. Rzayev, Carbohydr. Polym. 137 (2016) 111 (http://dx.doi.org/10.1016/j.carbpol.2015.10.043)

L. Biesekia, F. Bertella, H. Treichel, F. G. Penha, S. B. C. Pergher, Mat. Res. 16 (5) (2013) 1122 (http://dx.doi.org/10.1590/S1516-14392013005000114)

D.E. Kherroub, M. Belbachir, S. Lamouri, L. Bouhadjar and K. Chikh, OJC 29 (4) (2013) 1429 (http://dx.doi.org/10.13005/ojc/290419)

C.S. Carriço, T. Fraga, V.M.D. Pasa, Eur. Polym. J. 85 (2016) 53 (http://dx.doi.org/-10.1016/j.eurpolymj.2016.10.012)

A. Hejna , M. Kirpluks, P. Kosmela, U. Cabulisb, J. Haponiuka, Ł. Piszczyk, IND CROP PROD 95 (2017) 113 ( http://dx.doi.org/10.1016/j.indcrop.2016.10.023)

H. Zeghioud, S. Lamouri, Y. Mahmoud, T. Hadj-Ali, J. Serb. Chem. Soc. 80-11 (2015) 1435 (http://dx.doi.org/10.2298/JSC150305064Z)

M. C. Saha, Md. E. Kabir, S. Jeelani, Mat. Sci. Eng. A-Struct. 479 (2008) 213 (http://dx.doi.org/10.1016/j.msea.2007.06.060)

E.A. Moawed, M.A. El-Hagrasy, N.E.M. Embaby, J. Taiwan Inst. Chem. Eng. 70 (2017) 382. ( http://dx.doi.org/10.1016/j.jtice.2016.10.037 ).

W. Yang, S. Luo, B. Zhang, Z. Huang and X. Tang, Appl. Surf. Sci. 254 (2008) 7427 (http://dx.doi.org/10.1016/j.apsusc.2008.05.343 )

H. Lian, W. Chang, Q. Liang, C. Hu, R. Wang, L. Zu and Y. Liu, RSC Adv. 7 (2017) 46221 (http://dx.doi.org/10.1039/c7ra07476j)

H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8 (26) (2016) 12977. (http://dx.doi.org/10.1039/C6NR02216B)

M. Kumar, J.S. Chung, B.-S. Kong, E.J. Kim, S.H. Hur, Mater Lett 106 (2013) 319. (http://dx.doi.org/10.1016/j.matlet.2013.05.059)

R. Jahanmardi, B. Kangarlou, A.R. Dibazar, J. Nanostructure Chem. 1 (2013) 1 (http://dx.doi.org10.1186/2193-8865-3-82)

DOI: https://doi.org/10.2298/JSC180321076M

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)