Hydrothermal treatment of sugars to obtain high-value products

Main Article Content

Tanja Gagić
https://orcid.org/0000-0003-0331-3531
Amra Perva-Uzunalić
Željko Knez
Mojca Škerget

Abstract

In the present work, the degradation of different sugars, such as lac­tose, cellobiose, sucrose, galactose, glucose, fructose and xylose, was per­formed in batch reactor with subcritical water at temperature of 250 °C and reaction time of 1, 5 and 15 min. The yields of water-soluble phase, acetone-soluble phase, solid residue and gases were determined. The influence of react­ion time and difference in sugar structure on the yield of phases and conversion of sugars was studied. Sugars with keto- and furanose structures were less stable than aldo- and pyranose-sugars. The most stable sugars were aldo-hex­oses (galactose and glucose). The water-soluble fraction, which is composed of sugars and their deri­vatives, was analyzed by HPLC using RI and UV det­ectors. The detected degra­dation products by HPLC were: 5-hydroxymethyl­furfural (5-HMF), furfural, ery­throse, sorbitol, 1,6-anhydroglucose, glycolal­dehyde, glycerl­alde­hy­de, 1,3-di­hy­droxyacetone, pyruvaldehyde, formic, levuli­nic, lactic, oxalic and succinic acids.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
T. Gagić, A. Perva-Uzunalić, Željko Knez, and M. Škerget, “Hydrothermal treatment of sugars to obtain high-value products”, J. Serb. Chem. Soc., vol. 85, no. 1, pp. 97–109, Feb. 2020.
Section
Chemical Engineering

References

M. Ravber, Ž. Knez, M. Škerget, Food Chem. 166 (2015) 316 (http://dx.doi.org/10.1016/j.foodchem.2014.06.025)

A. Kruse, E. Dinjus, J. Supercrit. Fluids 39 (2007) 362 (http://dx.doi.org/10.1016/j.supflu.2006.03.016)

I. Pavlovič, Ž. Knez, M. Škerget, Chem. Biochem. Eng. Q. 27 (2013) 73 (https://doi.org/10.15255/CABEQ.2014.99)

H. Weingärtner, E. U. Franck, Angew. Chemie Int. Ed. 44 (2005) 2672 (http://dx.doi.org/10.1002/anie.200462468)

K. Kohli, R. Prajapati, B. K. Sharma, Energies 12 (2019) 233 (http://dx.doi.org/10.3390/en12020233)

M. Herrero, A. Cifuentes, E. Ibañez, Food Chem. 98 (2006) 136 (http://dx.doi.org/10.1016/j.foodchem.2005.05.058)

D. Klein-Marcuschamer, P. Oleskowicz-Popiel, B. A. Simmons, H. W. Blanch, Biotechnol. Bioeng. 109 (2012) 1083 (http://dx.doi.org/10.1002/bit.24370)

M. Möller, P. Nilges, F. Harnisch, U. Schröder, ChemSusChem 4 (2011) 566 (http://dx.doi.org/10.1002/cssc.201000341)

D. Knežević, W. P. M. Van Swaaij, S. R. A. Kersten, Ind. Eng. Chem. Res. 48 (2009) 4731 (http://dx.doi.org/10.1021/ie801387v)

X. Cao, X. Peng, S. Sun, L. Zhong, W. Chen, S. Wang, R. C. Sun, Carbohydr. Polym. 118 (2015) 44 (http://dx.doi.org/10.1016/j.carbpol.2014.10.069)

C. Promdej, Y. Matsumura, Ind. Eng. Chem. Res. 50 (2011) 8492 (http://dx.doi.org/10.1021/ie200298c)

D. Klingler, H. Vogel, J. Supercrit. Fluids 55 (2010) 259 (http://dx.doi.org/10.1016/j.supflu.2010.06.004)

Q. Jing, X. Lü, Chinese J. Chem. Eng. 16 (2008) 890 (http://dx.doi.org/10.1016/S1004-9541(09)60012-4)

T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, M. Goto, Chem. Eng. Technol. 32 (2009) 527 (http://dx.doi.org/10.1002/ceat.200800537)

S. H. Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, J. Food Eng. 68 (2005) 309 (http://dx.doi.org/10.1016/j.jfoodeng.2004.06.004)

X. Lü, S. Saka, J. Supercrit. Fluids 61 (2012) 146 (http://dx.doi.org/10.1016/j.supflu.2011.09.005)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 38 (1999) 2888 (http://dx.doi.org/10.1021/ie9806390)

F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 45 (2006) 2163 (http://dx.doi.org/10.1021/ie051088y)

F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 46 (2007) 7703 (http://dx.doi.org/10.1021/ie061673e)

D. A. Cantero, L. Vaquerizo, C. Martinez, M. D. Bermejo, M. J. Cocero, Catal. Today 255 (2015) 80 (http://dx.doi.org/10.1016/j.cattod.2014.11.013)

T. Oomori, S. H. Khajavi, Y. Kimura, S. Adachi, R. Matsuno, Biochem. Eng. J. 18 (2004) 143 (http://dx.doi.org/10.1016/j.bej.2003.08.002)

Y. Yu, Z. M. Shafie, H. Wu, Ind. Eng. Chem. Res. 52 (2013) 17006 (http://dx.doi.org/10.1021/ie403140q)

M. Sasaki, M. Furukawa, K. Minami, T. Adschiri, K. Arai, Ind. Eng. Chem. Res. 41 (2002) 6642 (http://dx.doi.org/10.1021/ie020326b)

B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 37 (1998) 357 (http://dx.doi.org/10.1021/ie9704408)

N. Soisangwan, D. M. Gao, T. Kobayashi, P. Khuwijitjaru, S. Adachi, J. Food Process Eng. 40 (2017) 12413 (http://dx.doi.org/10.1111/jfpe.12413)

M. D. A. Saldaña, V. H. Alvarez, A. Haldar, J. Chem. Thermodyn. 55 (2012) 115 (http://dx.doi.org/10.1016/j.jct.2012.06.016)

S. Haghighat Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, LWT – Food Sci. Technol. 38 (2005) 297 (http://dx.doi.org/10.1016/j.lwt.2004.06.005)

J. Ohshima, S. Haghighat Khajavi, Y. Kimura, S. Adachi, Eur. Food Res. Technol. 227 (2008) 799 (http://dx.doi.org/10.1007/s00217-007-0788-4)

D. Gao, T. Kobayashi, S. Adachi, J. Appl. Glycosci. 61 (2014) 9 (http://dx.doi.org/10.5458/jag.jag.JAG-2013_006)

N. Paksung, Y. Matsumura, Ind. Eng. Chem. Res. 54 (2015) 7604 (http://dx.doi.org/10.1021/acs.iecr.5b01623)

C. Usuki, Y. Kimura, S. Adachi, Chem. Eng. Technol. 31 (2008) 133 (http://dx.doi.org/10.1002/ceat.200700391)

T. M. Aida, N. Shiraishi, M. Kubo, M. Watanabe, R. L. Smith, J. Supercrit. Fluids 55 (2010) 208 (http://dx.doi.org/10.1016/j.supflu.2010.08.013)

Q. Jing, X. Lü, Chinese J. Chem. Eng. 15 (2007) 666 (https://doi.org/10.1016/S1004-9541(07)60143-8)

M. Möller, U. Schröder, RSC Adv. 3 (2013) 22253 (http://dx.doi.org/10.1039/c3ra43108h)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, H. Ohzeki, Ind. Eng. Chem. Res. 36 (1997) 5063 (http://dx.doi.org/10.1021/ie9704354)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 1552 (http://dx.doi.org/10.1021/ie960250h)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 2025 (http://dx.doi.org/10.1021/ie960747r)

G. Bonn, H. Binder, H. Leonhard, O. Bobleter, Monatsh. Chem. Chem. Mon. 116 (1985) 961 (http://dx.doi.org/10.1007/BF00809189)

P. J. Oefner, A. H. Lanziner, G. Bonn, O. Bobleter, Monatsh. Chem. Chem. Mon. 123 (1992) 547 (http://dx.doi.org/10.1007/BF00816848)

A. K. Goodwin, G. L. Rorrer, Chem. Eng. J. 163 (2010) 10 (http://dx.doi.org/10.1016/j.cej.2010.07.013)

I. G. Lee, M. S. Kim, S. K. Ihm, Ind. Eng. Chem. Res. 41 (2002) 1182 (http://dx.doi.org/10.1021/ie010066i)

L. Ferreira-Pinto, A. C. Feirhrmann, M. L. Corazza, N. R. C. Fernandes-Machado, J. S. Dos Reis Coimbra, M. D. A. Saldaña, L. Cardozo-Filho, Int. J. Hydrogen Energy 40 (2015) 12162 (http://dx.doi.org/10.1016/j.ijhydene.2015.07.092)

T. Gagić, A. Perva-Uzunalić, Ž. Knez, M. Škerget, Ind. Eng. Chem. Res. 57 (2018) 6576 (http://dx.doi.org/10.1021/acs.iecr.8b00332)

M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Anal. Chem. 28 (1956) 350 (http://dx.doi.org/10.1021/ac60111a017).