Design of an amino-functionalized chelating macroporous copolymer poly(GMA-co-EGDMA) for the sorption of Cu(II) ions

Main Article Content

Ljiljana Suručić
Aleksandra B. Nestorović
Antonije E. Onjia
Goran Vilotija Janjić
Aleksandra Acika Rakić

Abstract

Polymer-based, highly porous nanocomposites with functionalized ligands attached to the core structure are extremely efficient in the detection, removal and recovery of metals through the process of sorption. Quantum-chemical models could be helpful for sorption process analyses. The sorption of Cu(II) ions by amino-functionalized chelating macroporous copolymers poly(GMA-co-EGDMA)-amine and sorption selectivity of the subject copoly­mers, ethylenediamine (en), diethylenetriamine (dien) and triethyl­enetetramine (trien), were successfully modelled by quantum chemical calculations. Consi­dering the crystal structures from CSD and experimental conditions during the formation of metal complexes, the most frequent mononuclear complexes are those with the tetradentate teta ligand, while binuclear complexes are formed when the metal ion is in large excess. Although the en-copolymer was the most effective functionalized one, higher maximum sorption capacities (Qmax) were observed for the dien- and trien-copolymers, due to their abilities to form binuc­lear complexes. The enthalpy term has the greatest contribution to the total Gibbs energy change of reaction for the formation of mononuclear Cu(II) com­plexes (ΔGaq), while the solvation energy of the reaction has the greatest con­tribution in the formation of binuclear complexes. The results of the study indi­cate that small amines with the ability to form binuclear complex are the best choice for functionalization of the considered copolymer.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Suručić, A. B. Nestorović, A. E. Onjia, G. V. Janjić, and A. A. Rakić, “Design of an amino-functionalized chelating macroporous copolymer poly(GMA-co-EGDMA) for the sorption of Cu(II) ions”, J. Serb. Chem. Soc., vol. 84, no. 12, pp. 1391–1404, Jan. 2020.
Section
Inorganic Chemistry

References

Z. L. He, X. E. Yang, P. J. Stoffella, J. Trace Elem. Med. Biol.19 (2005) 125 (https://doi.org/10.1016/j.jtemb.2005.02.010)

Q. Zhuang, G. Li, Z. Liu, Catena 170 (2018) 386 (https://doi.org/10.1016/j.catena.2018.06.037)

S. Deniz, N. Taşci, E. Yetimoğlu, M. Kahraman, J. Serb. Chem. Soc. 82 (2017) 83(https://doi.org/10.2298/JSC180606085T)

A. S. Mohammed, A. Kapri, R. Goel, Heavy Metal Pollution: Source, Impact, and Remedies, Biomanagement of Metal-Contaminated Soils, Springer, Dordrecht, 2011, p. 1 (https://doi.org/10.1007/978-94-007-1914-9_1)

J. P. Kaware S. R. Dhokpande, Int. J. Eng. Sci. Innovative Technol. 2 (2013) 304

A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, ChemBioEng Rev. 4 (2017) 37 (https://doi.org/10.1002/cben.201600010)

C. Santhosh, V. Velmurugan, G. Jacob, S. K. Jeong, A. N. Grace, A. Bhatnagar, Chem. Eng. J. (Amsterdam, Neth.) 306 (2016) 1116 (https://doi.org/10.1016/j.cej.2016.08.053)

D. T. Sun, L. Peng, W. S. Reeder, S. M. Moosavi, D. Tiana, D. K. Britt, E. Oveisi, W. L. Queen, ACS Cent. Sci. 4 (2018) 349 (https://doi.org/10.1021/acscentsci.7b00605)

G. Lofrano, M. Carotenuto, G. Libralato, R. F. Domingos, A. Markus, L. Dini, R. K. Gautam, D. Baldantoni, M. Rossi, S. K. Sharma, M. C. Chattopadhyaya, M. Giugni, S. Meric, Water Res. 92 (2016) 22 (https://doi.org/10.1016/j.watres.2016.01.033)

E. E. El Sayed, Water Sci. J. 32 (2018) 32 (https://doi.org/10.1016/j.wsj.2018.02.001)

M. R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku,Y. Okamoto,T. Yaita, Chem. Eng. J. (Amsterdam, Neth.) 242 (2014) 127 (https://doi.org/10.1016/j.cej.2013.12.072)

A. Shahat, M. R. Awual, M. Naushad, Chem. Eng. J. (Amsterdam, Neth.) 271 (2015) 155 (https://doi.org/10.1016/j.cej.2015.02.097)

M. R. Awual, M. M. Hasan, M. A. Khaleque, M. C. Sheikh, Chem. Eng. J. (Amsterdam, Neth.) 288 (2016) 368 (https://doi.org/10.1016/j.cej.2015.11.108)

M. R. Awual, Chem. Eng. J. (Amsterdam, Neth.) 289 (2016) 65 (https://doi.org/10.1016/j.cej.2015.12.078)

M. R. Awual,Y. Miyazaki, T. Taguchi, H. Shiwaku, T. Yaita, Chem. Eng. J. (Amsterdam, Neth.) 291 (2016) 128 (https://doi.org/10.1016/j.cej.2016.01.109)

M. R. Awual, Chem. Eng. J. (Amsterdam, Neth.) 300 (2016) 264 (http://dx.doi.org/10.1016/j.cej.2016.04.071)

M. R. Awual, Chem. Eng. J. (Amsterdam, Neth.) 303 (2016) 539 (http://dx.doi.org/10.1016/j.cej.2016.06.040)

M. R. Awual, Chem. Eng. J. (Amsterdam, Neth.) 307 (2017) (http://dx.doi.org/10.1016/j.cej.2016.08.108)

M. R. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, Y. Okamoto, J. Hazard. Mater. 278 (2014) 227 (http://dx.doi.org/10.1016/j.jhazmat.2014.06.011)

M. R. Awual, J. Ind. Eng. Chem. 20 (2014) 3493(http://dx.doi.org/10.1016/j.jiec.2013.12.040)

X. F. Tan, Y. G. Liu, Y. L. Gu, Y. Xu, G. M. Zeng, X. J. Hu, S. B. Liu, X. Wang, S. M. Liu, J. Li, Bioresour. Technol. 212 (2016) 318 (http://dx.doi.org/10.1016/j.biortech.2016.04.093)

S. H. Ho, S. Zhu, J. S. Chang, Bioresour. Technol. 246 (2017) 123 (http://dx.doi.org/10.1016/j.biortech.2017.08.061)

H. Li, X. Dong, E. B. da Silva, L. M. de Oliveira,Y. Chen, L. Q. Ma, Chemosphere 178 (2017) 466 (http://dx.doi.org/10.1016/j.chemosphere.2017.03.072)

D. Wei, B. Li, H. Huang, L. Luo, J. Zhang, Y. Yang, J. Guo, L. Tang, G. Zeng, Y. Zhou, Chemosphere 197 (2018) 165 (http://dx.doi.org/10.1016/j.chemosphere.2017.12.193)

R. Seth, S. Yang, S. Choi, M. Sabean, E. A. Roberts, Toxicol. In Vitro 18 (2004) 501 (http://dx.doi.org/10.1016/j.tiv.2004.01.006)

C. G. Fraga, Mol. Aspects Med. 26 (2005) 235 (http://dx.doi.org/10.1016/j.mam.2005.07.013)

J. Y. Uriu-Adams, C. L. Keen, Mol. Aspects Med. 26 (2005) 268 (https://doi.org/10.1016/j.mam.2005.07.015)

S. A. Al-Saydeh, M. H. El-Naas, S. J. Zaidi, J. Ind. Eng. Chem. 56 (2017) 35 (https://doi.org/10.1016/j.jiec.2017.07.026)

M. R. Awual,T. Yaita, S. A. El-Safty, H. Shiwaku, S. Suzuki, Y. Okamoto, Chem. Eng. J. (Amsterdam, Neth.) 221 (2013) 322 (http://dx.doi.org/10.1016/j.cej.2013.02.016)

M. R. Awual, M. Ismael, T. Yaita, S. A. El-Safty, H. Shiwaku, Y. Okamoto, S. Suzuki, Chem. Eng. J. (Amsterdam, Neth.) 222 (2013) 67 (http://dx.doi.org/10.1016/j.cej.2013.02.042)

M. R. Awual, I. M. M. Rahman,T. Yaita, M. A. Khaleque, M. Ferdows, Chem. Eng. J. (Amsterdam, Neth.) 236 (2014) 100 (http://dx.doi.org/10.1016/j.cej.2013.09.083)

M. R. Awual, Chem. Eng. J. (Amsterdam, Neth.) 266 (2015) 368 (http://dx.doi.org/10.1016/j.cej.2014.12.094)

M. R. Awual, G. E. Eldesoky, T. Yaita, M. Naushad, H. Shiwaku, Z. A. Al Othman, S. Suzuki, Chem. Eng. J. (Amsterdam, Neth.) 279 (2015) 639 (http://dx.doi.org/10.1016/j.cej.2015.05.049)

M. R. Awual, Chem. Eng. J. (Amsterdam, Neth.) 307 (2017) 85 (http://dx.doi.org/10.1016/j.cej.2016.07.110)

M. R. Awual, M. Ismael, M. A. Khaleque, T. Yaita, J. Ind. Eng. Chem. 20 (2014) 2332 (http://dx.doi.org/10.1016/j.jiec.2013.10.009)

S. A. El-Safty, M. A. Shenashen, M. Ismael, M. Khairy, M. R. Awual, Micropor. Mesopor. Mater. 166 (2013) 195 (http://dx.doi.org/10.1016/j.micromeso.2012.03.021)

M. R. Awual, T. Yaita, Y. Okamoto, Sens. Actuators, B 203 (2014) 71 (http://dx.doi.org/10.1016/j.snb.2014.06.088)

M. R. Awual, M. M. Hasan, Sens. Actuators, B 206 (2015) 692 (http://dx.doi.org/10.1016/j.snb.2014.09.086)

A. S. Mohammed, A. Kapri, R. Goel, Heavy Metal Pollution: Source, Impact, and Remedies, Biomanagement of Metal-Contaminated Soils, Springer, Dordrecht, 2011 (https://doi.org/10.1007/978-94-007-1914-9_1)

C. Chen, C. Chiang, C. Chen, Sep. Purif. Technol. 54 (2007) 396 (https://doi.org/10.1016/j.seppur.2006.10.020)

L. Malović, A. Nastasović, Z. Sandić, J. Marković, D. Đorđević, Z. Vuković, J. Mater. Sci. 42 (2007) 3326 (https://doi.org/10.1007/s10853-006-0958-y)

Z. P. Sandić, A. B. Nastasović, Hem. Ind. 63 (2009) 269 (https://doi.org/10.2298/HEMIND0903269S)

M. T. Gokmen, F. E. Du Prez, Prog. Polym. Sci. 37 (2012) 365 (https://doi.org/10.1016/j.progpolymsci.2011.07.006)

B. M. Marković, Z. M. Vuković, V. V. Spasojević, V. B. Kusigerski, V. B. Pavlović, A. E. Onjia, A. B. Nastasović, J. Alloys Compd. 705 (2017) 38 (https://doi.org/10.1016/j.jallcom.2017.02.108)

A. Nastasović, S. Jovanović, D. Đorđević, A. Onjia, D. Jakovljević, T. Novaković, React. Funct. Polym. 58 (2004) 139 (https://doi.org/10.1016/j.reactfunctpolym.2003.11.015)

A. Nastasović, Z. Sandić, L. Suručić, D. Maksin, D. Jakovljević, A. Onjia, J. Hazard. Mater. 171 (2009) 153 (https://doi.org/10.1016/j.jhazmat.2009.05.116)

A. Borowiak-Resterna, R. Cierpiszewski, K. Prochaska, J. Hazard. Mater. 179 (2010) 828 (https://doi.org/10.1016/j.jhazmat.2010.03.078)

P. M. van Berkel, M. Punt, G. J. A. A. Koolhaas, W. L. Driessen, J. Reedijk, D. C. Sherrington, React. Funct. Polym. 32 (1997) 139 (https://doi.org/10.1016/S1381-5148(96)00077-6)

D. D. Maksin, A. B. Nastasović, A. D. Milutinović-Nikolić, L. T. Suručić, Z. P. Sandić, R. V. Hercigonja, A. E. Onjia, J. Hazard. Mater. 209-210 (2012) 99 (https://doi.org/10.1016/j.jhazmat.2011.12.079)

F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 58 (2002) 380 (https://doi.org/10.1107/S0108768102003890)

Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009

V. M. Nurchi, G. Crisponi, M. Crespo-Alonso, J. I. Lachowicz, Z. Szewczuk, G. J. Cooper, Dalton Trans. 42 (2013) 6161 (https://doi.org/10.1039/C2DT32252H).

Most read articles by the same author(s)