In silico studies on smoothened human receptor and its antagonists in search of anticancer effects

Main Article Content

Ana Borota
Sorin Avram
Ramona Curpan
Alina Bora
Daniela Varga
Liliana Halip
Luminita Crisan
https://orcid.org/0000-0001-7148-5701

Abstract

Lately, the cancers related with abnormal hedgehog (Hh) signalling pathway are targeted by smoothened (SMO) receptor inhibitors that are rapidly developing. Still, the problems of known inhibitors such as severe side effects, weak potency against solid tumors or even the acquired resistance need to be overcome by developing new suitable inhibitors. To explore the structural requirements of antagonists needed for SMO receptor inhibition, pharma­co­phore mapping, 3D-QSAR models, database screening and docking studies were performed. The best selected pharmacophore hypothesis based on which statistically significant atom-based 3D-QSAR model was developed (R2 = 0.856, Q2 = 0.611 and Pearson-R = 0.817), was further subjected to dataset screening in order to evaluate its ability to prioritize active compounds over decoys. The efficiency of one four-points pharmacophore hypothesis (AAHR.524) was observed based on good evaluation metrics such as the area under the curve (0.795), and weighted average precision (0.835), suggesting that the model is trustworthy in predicting novel inhibitors against SMO receptor.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Borota, “In silico studies on smoothened human receptor and its antagonists in search of anticancer effects”, J. Serb. Chem. Soc., vol. 85, no. 3, pp. 335–345, Mar. 2020.
Section
Theoretical Chemistry

References

M. Ruat, L. Hoch, in The Smoothened Receptor in Cancer and Regenerative Medicine, M. Ruat, Ed., Springer, Berlin, 2015, pp. 1–11 (ISBN 978-3-319-19755-5)

G. Liapakis, A. Cordomí, L. Pardo, Curr. Pharm. Des. 18 (2012) 175 (http://dx.doi.org/10.2174/138161212799040529)

D. Hilger, M. Masureel, B. K. Kobilka, Nat. Struct. Mol. Biol. 25 (2018) 4 (http://dx.doi.org/10.1038/s41594-017-0011-7)

J. Shonberg, R. C. Kling, P. Gmeiner, S. Löber, Bioorg. Med. Chem. 23 (2015) 3880 (http://dx.doi.org/10.1016/j.bmc.2014.12.034)

L. Halip, A. Borota, M. Mracec, R. Curpan, A. Gruia, M. Mracec, Rev. Roum. Chim. 54 (2009) 157 (http://revroum.lew.ro/wp-content/uploads/2009/RRCh_2_2009/Art%2007.pdf)

K. K. Chahal, M. Parle, R. Abagyn, Anti-Cancer Drugs 29 (2018) 387 (http://dx.doi.org/10.1097/CAD.0000000000000609)

L. L. Rubin, F. J. de Sauvage, Nat. Rev. Drug Discov. 5 (2006) 1026 (http://dx.doi.org/10.1038/nrd2086)

C. Wicking, I. Smyth, A. Bale, Oncogene 18 (1999) 7844 (http://dx.doi.org/10.1038/sj.onc.1203282)

S. J. Scales, F. J. de Sauvage, Trends Pharmacol. Sci. 30 (2009) 303 (http://dx.doi.org/10.1016/j.tips.2009.03.007)

D. N. Watkins, D. M. Berman, S. G. Burkholder, B. Wang, P. A. Beachy, S. B. Baylin, Nature 422 (2003) 313 (http://dx.doi.org/10.1038/nature01493)

S. P. Thayer, M. P. di Magliano, P. W. Heiser, C. M. Nielsen, D. J. Roberts, G. Y. Lauwers, Y. P. Qi, S. Gysin, C. Fernández-del Castillo, V. Yajnik, B. Antoniu, M. McMahon, A. L. Warshaw, M. Hebrok, Nature 425 (2003) 851 (http://dx.doi.org/10.1038/nature02009)

D. Qualtrough, A. Buda, W. Gaffield, A. C. Williams, C. Paraskeva, Int. J. Cancer 110 (2004) 831 (http://dx.doi.org/10.1002/ijc.20227)

S. Mukherjee, N. Frolova, A. Sadlonova, Z. Novak, A. Steg, G. P. Page, D. R. Welch, S. M. Lobo-Ruppert, J. M. Ruppert, M. R. Johnson, A. R. Frost, Cancer Biol. Ther. 5 (2006) 674 (https://doi.org/10.4161/cbt.5.6.2906)

D. M. Berman, S. S. Karhadkar, A. Maitra, R. Montes de Oca, M. R. Gerstenblith, K. Briggs, A. R. Parker, Y. Shimada, J. R. Eshleman, D. N. Watkins, P. A. Beachy, Nature 425 (2003) 846 (http://dx.doi.org/10.1038/nature01972)

S. S. Karhadkar, G. S. Bova, N. Abdallah, S. Dhara, D. Gardner, A. Maitra, J. T. Isaacs, D. M. Berman, P. A. Beachy, Nature 431 (2004) 707 (http://dx.doi.org/10.1038/nature02962)

P. Lin, Y. He, G. Chen, H. Ma, J. Zheng, Z. Zhang, B. Cao, H. Zhang, X. Zhang, X. Mao, Anti-Cancer Drugs 29 (2018) 995 (http://dx.doi.org/10.1097/CAD.0000000000000679)

J. Jiang, C. C. Hui, Dev. Cell. 15 (2008) 801 (http://dx.doi.org/10.1016/j.devcel.2008.11.010)

T. K. Rimkus, R. L. Carpenter, S. Qasem, M. Chan, H. W. Lo, Cancers 8 (2016) 22 (http://dx.doi.org/10.3390/cancers8020022 )

S. V. Mohan, A. L. Chang, Clin. Cancer Res. 21 (2015) 2677 (http://dx.doi.org/10.1158/1078-0432.CCR-14-3180)

M. Xin, X. Ji, L. K. de la Cruz, S. Thareja, B. Wang, Med. Res. Rev. 38 (2018) 870 (http://dx.doi.org/10.1002/med.21482)

W. Lu, D. Geng, Z. Sun, Z. Yang, H. Ma, J. Zheng, X. Zhang, Bioorg. Med. Chem. Lett. 24 (2014) 2300 (https://doi.org/10.1016/j.bmcl.2014.03.079)

S. L. Dixon, A. M. Smondyrev, E. H. Knoll, S. N. Rao, D. E. Shaw, R. A. Friesner, J. Comput.-Aided Mol. Design 20 (2006) 647 (http://dx.doi.org/10.1007/s10822-006-9087-6)

R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, D. E. Shaw, M. Shelley, J. K. Perry, P. Francis, P. S. Shenkin, J. Med. Chem. 47 (2004) 1739 (https://doi.org/10.1021/jm0306430)

W. Sherman, T. Day, M. P. Jacobson, R. A. Friesner, R. Farid, J. Med. Chem. 49 (2006) 534 (https://doi.org/10.1021/jm050540c)

A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20 (2002) 269 (https://doi.org/10.1016/S1093-3263(01)00123-1)

A. Golbraikh, A. Tropsha, J. Comput.-Aided Mol. Des. 16 (2002) 357 (https://doi.org/10.1023/A:1020869118689)

S. I. Avram, L. M. Pacureanu, A. Bora, L. Crisan, S. Avram, L. Kurunczi, J. Chem. Inform. Model. 54 (2014) 2360 (http://dx.doi.org/10.1021/ci5002668)

J. A. Hanley, B. J. McNeil, Radiology 143 (1982) 29 (http://dx.doi.org/10.1148/radiology.143.1.7063747)

J. F. Truchon, C. I. J. Bayly, J. Chem. Inform. Model. 47 (2007) 488 (http://dx.doi.org/10.1021/ci600426e)

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, SIGKDD Explor. Newsletter 11 (2009) 10 (http://dx.doi.org/10.1145/1656274.1656278)

T. Fawcett, Pattern Recog. Lett. 27 (2006) 861 (http://dx.doi.org/10.1016/j.patrec.2005.10.010)

A. N. Jain, J. Comput.-Aided Mol. Des. 22 (2008) 201 (http://dx.doi.org/10.1007/s10822-007-9151-x)

E. Kotsampasakou, G. F. Ecker, J. Chem. Inform. Model. 57 (2017) 608 (http://dx.doi.org/10.1021/acs.jcim.6b00518)

B. Badhani, R. Kakkar, J. Biomol. Struct. Dyn. 35 (2017)1950 (http://dx.doi.org/10.1080/07391102.2016.1202863)

H. Gohlke, M. Hendlich, G. Klebe, J. Mol. Biol. 295 (2000) 337 (http://dx.doi.org/10.1006/jmbi.1999.3371)

C. Wang, H. Wu, T. Evron, E. Vardy, G. W. Han, X. P. Huang, S. J. Hufeisen, T. J. Mangano, D. J. Urban, V. Katritch, V. Cherezov, M. G. Caron, B. L. Roth, R. C. Stevens, Nature Commun. 10 (2014) 4355 (http://dx.doi.org/10.1038/ncomms5355)

C. Wang, H. Wu, V. Katritch, G. W. Han, X. P. Huang, W. Liu, F. Y. Siu, B. L. Roth, V. Cherezov, R. C. Stevens, Nature 497 (2013) 338 http://dx.doi.org/10.1038/nature12167)

E. F. X. Byrne, R. Sircar, P. S. Miller, G. Hedger, G. Luchetti, S. Nachtergaele, M. D. Tully, L. Mydock-McGrane, D. F. Covey, R. P. Rambo, M. S. P. Sansom, S. Newstead, R. Rohatgi, C. Siebold, Nature 535 (2016) 517 (http://dx.doi.org/10.1038/nature18934).