Overpotential controls a morphology of electrolytically produced copper dendritic forms

Nebojša D. Nikolić, Predrag M. Živković, Miomir G. Pavlović, Zvezdana Baščarević

Abstract


Morphologies of copper dendritic forms obtained by both potentiostatic and galvanostatic regimes of electrolysis with various amounts of the electricity were analyzed by the scanning electron microscopy (SEM) technique. Irrespective of amount of passed electricity, the 3D (three dimensional) pine-like dendrites with the sharp tips were formed by the potentiostatic regime of electrolysis. On the other hand, the amount of passed electricity had a strong effect on the shape of the 3D pine-like dendrites formed by the galvanostatic regime of electrolysis. The dendrites with the sharp tips were formed with the smaller, while the dendrites which tips аre globules were formed with larger amount of the passed electricity. The change of the shape of galvanostatically synthesized 3D pine-like dendrites was explained by comparison with the copper deposits obtained by potentiostatically at overpotentials which corresponded to the final overpotentials during galvanostatic regime of electrolysis for the analyzed amounts of the electricity. On the basis of similarity of the obtained morphologies at the macro level, it is concluded that overpotential plays a crucial role in formation of electrolytically synthesized dendrites, and that the controlled conditions of electrolysis can represent a suitable way for a synthesis of spherical Cu particles by electrolysis.

Keywords


electrolysis; copper; powder; dendrite; scanning electron microscope (SEM)

Full Text:

PDF (1,999 kB)

References


R. K. Nekouei, F. Rashchi, A. A. Amadeh, Powder Technol. 237 (2013) 165 (http://dx.doi.org/10.1016/j.powtec.2013.01.032)

M. G. Pavlović, K. I. Popov, Metal powder production by electrolysis, in Electrochemistry Encyclopedia (http://knowledge.electrochem.org/encycl/art-p04-metalpowder.htm)

M. G. Pavlović, Lj. J. Pavlović, V. M. Maksimović, N. D. Nikolić, K. I. Popov, Int. J. Electrochem. Sci. 5 (2010) 1862

G. Orhan, G. Hapci, Powder Technol. 201 (2010) 57 (https://doi.org/10.1016/j.powtec.2010.03.003)

N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, K. I. Popov, Powder Technol. 185 (2008) 195 (https://doi.org/10.1016/j.powtec.2007.10.014)

G. Orhan, G. G. Gezgin, J. Serb. Chem. Soc. 77 (2012) 651 (doi: 10.2298/JSC110627196O)

T. N. Ostanina, V. M. Rudoi, A. V. Patrushev, A. B. Darintseva, A. S. Farlenkov, J. Electroanal. Chem. 750 (2015) 9 (https://doi.org/10.1016/j.jelechem.2015.04.031)

Lj. Avramović, V. M. Maksimović, Z. Baščarević, N. Ignjatović, M. Bugarin, R. Marković, N. D. Nikolić, Metals 9 (2019) 56 (doi:10.3390/met9010056)

N. D. Nikolić, G. Branković, M. G. Pavlović, Powder Technol. 221 (2012) 271 (https://doi.org/10.1016/j.powtec.2012.01.014)

K. I. Popov, S. S. Djokić, N. D. Nikolić, V. D. Jović, Morphology of Electrochemically and Chemically Deposited Metals, Springer International Publishing, 2016 (doi: 10.1007/978-3-319-26073-0)

R. K. Nekouei, F. Rashchi, N. N. Joda, Powder Technol. 237 (2013) 554 (https://doi.org/10.1016/j.powtec.2012.12.046)

K. I. Popov, Lj. J. Pavlović, E. R. Ivanović, V. Radmilović, M. G. Pavlović, J. Serb. Chem. Soc. 67 (2002) 61

R. K. Nekouei, F. Rashchi, A. Ravanbakhsh, Powder Technol. 250 (2013) 91 (https://doi.org/10.1016/j.powtec.2013.10.012)

J. Xue, Q. Wu, Z. Wang, S. Yi, Hydrometallurgy 82 (2006) 154 (http://dx.doi.org/10.1016/j.hydromet.2006.03.010)

W. Lou,W. Cai, P. Li, J. Su, S. Zheng, Yi Zhang, W. Jin, Powder Technol. 326 (2018) 84 (https://doi.org/10.1016/j.powtec.2017.12.060)

16. H. Wang, Q. Wang, W. Xia, B. Ren, Powder Technol. 343 (2019) 607 (https://doi.org/10.1016/j.powtec.2018.11.078)

K. I. Popov, M. G. Pavlović, Electrodeposition of Metal Powders with Controlled Grain Size and Morphology, in R. W. White, J. O’ M. Bockris and B. E. Conway (Eds.), Mod. Asp. Electrochem., Vol. 24, Plenum Press, New York, 1993, pp. 299–391

N. D. Nikolić, K. I. Popov, Electrodeposition of Copper Powders and Their Properties, in S.S. Djokić (Ed.), Electrochem. Prod. Met. Powders, Ser. Mod. Asp. Electrochem., Vol. 54, Springer, 2012, pp. 125–185 (https://doi.org/10.1007/978-1-4614-2380-5_3)

K. I. Popov, M. G. Pavlović, M. D. Maksimović, S. Krstajić, J. Appl. Electrochem. 8 (1978) 503 (https://doi.org/10.1007/BF00610795)

K. I. Popov, M. G. Pavlović, M. D. Maksimović, J. Appl. Electrochem. 12 (1982) 525 (https://doi.org/10.1007/BF00614978)

N. D. Nikolić, P. M. Živković, B. Jokić, M. G. Pavlović, J. S. Stevanović, Maced. J. Chem. Chem. Eng. 33 (2014) 169

Lj. Avramović, M. Bugarin, D. Milanović, V. Conić, M. M. Pavlović, M. Vuković, N. D. Nikolić, J. Min. Metall. Sect. B-Metall. 54 B (2018) 291 (DOI: 10.2298/JMMB171002020A)

J. W. Diggle, A. R. Despic, J. O. Bockris, J. Electrochem. Soc. 116 (1969) 1503 (doi:10.1149/1.2411588)

N. D. Nikolić, Lj. Avramović, E. R. Ivanović, V. M. Maksimović, Z. Baščarević, N. Ignjatović, Trans. Nonferrous Met. Soc. China, in press

J. L. Barton, J. O' M. Bockris, Proc. Roy. Soc. A268 (1962) 485

http://www.cnpcpowder.com/products/copper/

P. Chokratanasombat, E. Nisaratanaporn, Engineering Journal 16 (2012) 39 (DOI:10.4186/ej.2012.16.4.39)

S. Stopić, P. Dvorak, B. Friedrich, World of Metallurgy – ERZMETALL 58 (2005) 195.




DOI: https://doi.org/10.2298/JSC190522066N

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)