Optimization of the simultaneous production of cellulase and xylanase by submerged and solid-state fermentation of wheat chaff

Authors

  • Mirjana Jovanović University of Novi Sad, Faculty of Technology Novi Sad, Department of Biotechnology and Pharmaceutical Engineering,Bulevar cara Lazara 1, Novi Sad
  • Damjan Vučurović University of Novi Sad, Faculty of Technology Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Bulevar cara Lazara 1, Novi Sad
  • Bojana Bajić University of Novi Sad, Faculty of Technology Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Bulevar cara Lazara 1, Novi Sad
  • Siniša Dodić University of Novi Sad, Faculty of Technology Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Bulevar cara Lazara 1, Novi Sad
  • Vanja Vlajkov University of Novi Sad, Faculty of Technology Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Bulevar cara Lazara 1, Novi Sad
  • Rada Jevtić-Mučibabić University of Novi Sad, Institute of Food Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad

DOI:

https://doi.org/10.2298/JSC190530080J

Keywords:

agricultural waste, lignocellulosic feedstock, fungi, hydrolytic enzymes, statistical analysis, enzyme activity

Abstract

Wheat chaff as an agricultural waste represents a cheap raw material for biotechnological processes. With its lignocellulosic composition, it is suit­able for producing hydrolytic enzymes for second generation renewable fuel production technologies. The aim of this work was to optimize the process para­meters (cultivation temperature 25–35 °C, pH value 4–6 and cultivation time 3–7 days) of the cultivating fungi (Trichoderma reesei QM 9414) on a media based on wheat chaff by submerged and solid-state techniques, in order to enhance and compare the two types of simultaneous cellulase and xylanase production. Optimal conditions for the submerged fermentation were 29.65 °C for tempe­rature, pH 4.27 and 7 days of cultivation, while for the solid-state fermentation, the optimal conditions were 28.01 °C, pH 6.00 and 7 days. The cellulolytic and xylanolytic activities of the obtained cultivation broth fil­trates were 0.0535 and 0.1676 U mL-1 for the submerged fermentation, and 0.0407 and 0.1401 U mL-1 for the solid-state fermentation, respectively, and with a 26.77 and 13.39 % enhancement of enzyme activity for submerged fer­men­tation, and a 22.96  and 42.66 % enhancement for solid-state fermentation, res­pectively, compared to the results obtained before optimization.

References

C. S. Farinas, Renew. Sust. Energy Rev. 52 (2015) 179 http://dx.doi.org/10.1016/j.rser.2015.07.092

S. S. Behera, R. C. Ray, Int. J. Biol. Macromol. 86 (2016) 656 http://dx.doi.org/10.1016/j.ijbiomac.2015.10.090

N. Srivastava, M. Srivastava, P. K. Mishra, V. K. Gupta, G. Molina, S. Rodriguez-Couto, A. Manikanta, P. W. Ramteke, Renew. Sust. Energy Rev. 82 (2018) 2379 http://dx.doi.org/10.1016/j.rser.2017.08.074

C. P. Kubicek, E. M. Kubicek, Curr. Opin. Chem. Biol. 35 (2016) 51 http://dx.doi.org/10.1016/j.cbpa.2016.08.028

R. R. Singhania, R. K. Sukumaran, A. K. Patel, C. Larroche, A. Pandey, Enzyme Microb. Technol. 46 (2010) 541 https://doi.org/10.1016/j.enzmictec.2010.03.010

V. Juturu, J. C. Wu, Renew. Sust. Energy Rev. 33 (2014) 188 http://dx.doi.org/10.1016/j.rser.2014.01.077

B. Bajić, S. Dodić, D. Vučurović, J. Dodić, J. Grahovac, Renew. Sust. Energy Rev. 50 (2015) 1347 https://doi.org/10.1016/j.rser.2015.05.079

Q. Bian, R. P. K. Ambrose, B. Subramanyam, J. Stored Prod. Res. 64 (2015) 21 https://doi.org/10.1016/j.jspr.2015.08.004

S. Krull, L. Eidt, A. Hevekerl, A. Kuenz, U. Prüße, Process Biochem. 63 (2017) 169 https://doi.org/10.1016/j.procbio.2017.08.010

M. Antov, T. Đorđević, Food Chem. 235 (2017) 175 https://doi.org/10.1016/j.foodchem.2017.05.058

S. Dodić, D. Vučurović, S. Popov, J. Dodić, J. Ranković, Renew. Sust. Energy Rev. 14 (2010) 3242 https://doi.org/10.1016/j.rser.2010.07.024

D. Vučurović, S. Dodić, S. Popov, J. Dodić, J. Grahovac, Bioresour. Technol. 104 (2012) 367 https://doi.org/10.1016/j.biortech.2011.10.085

K. Mihajlovksi, S. Davidović, Đ. Veljović, M. Carević, V. Lazić, S. Dimitrijević-Bran-ković, J. Serb. Chem. Soc. 82 (2017) 1223 https://doi.org/10.2298/JSCJSC170514092M

G. Hansen, M. Lübeck, J. Frisvad, P. Lübeck, B. Andersen, Process Biochem. 50 (2015) 1327 https://doi.org/10.1016/j.procbio.2015.05.017

G. L. Miller, Anal. Chem. 31 (1959) 426

O. H. Lowry, N. J. Rosenbrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265

H. Hirasawa, K. Shioya, K. Mori, K. Tashiro, S. Aburatani, Y. Shida, S. Kuhara, W. Ogasawara, J. Biosci. Bioeng., in Press https://doi.org/10.1016/j.jbiosc.2019.03.005

C. Zhao, L. Deng, H. Fang, Biomass Bioenergy 112 (2018) 93 https://doi.org/10.1016/j.biombioe.2018.03.001

H. Xiong, N. Weymarn, O. Turunen, M. Leisola, O. Pastinen, Bioresour. Technol. 96 (2005) 753 https://doi.org/10.1016/j.biortech.2004.08.007

B. Dojnov, M. Grujić, B. Perčević, Z. Vujčić, J. Serb. Chem. Soc. 80 (2015) 1279 https://doi.org/10.2298/JSC15031704D

A. Buntić, O. Stajković-Srbinović, D. Delić, S. Dimitrijević, M. Milić, J. Serb. Chem. Soc. 84 (2019) 129 https://doi.org/10.2298/JSC180802114B

I. S. Druzhinina, C. P. Kubicek, Microb. Biotechnol. 10 (2017) 1485 https://doi.org/10.1111/1751-7915.12726

B. Dojnov, M. Grujić, Z. Vujčić, J. Serb. Chem. Soc. 80 (2015) 1375 https://doi.org/10.2298/JSC150317041D

F. M. Bekler, S. Yalaz, R. G. Güven, K. Güven, J. Serb. Chem. Soc. 84 (2019) 1 https://doi.org/10.2298/JSC190227021B

N. Darabzadeh, Z. Hamidi-Esfahani, P. Hejazi, Food Sci. Nutr. 7 (2019) 572 https://doi.org/10.1002/fsn3.852

N Vaishnav, A. Singh, M. Adsul, P. Dixit, S.K. Sandhu, A. Mathur, S.K. Puri, R.R. Singhania, Bioresour. Technol. Rep. 2 (2018) 131 https://doi.org/10.1016/j.biteb.2018.04.003

A. A. N. Saqib, M. Hassan, N. F. Khan, S. Baig, Process Biochem. 45 (2010) 641 https://doi.org/10.1016/j.procbio.2009.12.011

T. Dutta, R. Sahoo, R. Sengupta, S. S. Ray, A. Bhattacharjee, S. Ghosh, J. Ind. Microbiol. Biotechnol. 35 (2008) 275 https://doi.org/10.1007/s10295-008-0304-2

M. G. Adsul, J. E. Ghule, R. Singh, H. Shaikh, K. B. Bastawde, D. V. Gokhale, A .J. Varma, Carbohydr. Polym. 57 (2004) 67 https://doi.org/10.1016/j.carbpol.2004.04.001

H. Belghith, S. Ellouz-Chaabouni, A. Gargouri, J. Biotechnol. 89 (2001) 257 https://doi.org/10.1016/S0168-1656(01)00309-1

X. Fujian, C. Hongzhang, L. Zuohu, Enzyme Microb. Technol. 30 (2002) 45 https://doi.org/10.1016/S0141-0229(01)00454-9

Y.T. Liu, Z. Y. Luo, C .N. Long, H. D. Wang, M. N. Long, Z. Hu, New Biotechnol. 28 (2011) 733 https://doi.org/10.1016/j.nbt.2010.12.003

C. M. Lo, Q. Zhang, N. V. Callow, L. K. Ju, Process Biochem. 45 (2010) 1494 https://doi.org/10.1016/j.procbio.2010.05.031

R. R. Singhania, R. K. Sukumaran, A. K. Patel, C. Larroche, A. Pandey, Enzyme Microb. Technol. 46 (2010) 541 https://doi.org/10.1016/j.enzmictec.2010.03.010.

Published

2020-03-04

How to Cite

[1]
M. Jovanović, D. Vučurović, B. Bajić, S. Dodić, V. Vlajkov, and R. Jevtić-Mučibabić, “Optimization of the simultaneous production of cellulase and xylanase by submerged and solid-state fermentation of wheat chaff”, J. Serb. Chem. Soc., vol. 85, no. 2, pp. 177–189, Mar. 2020.

Issue

Section

Biochemistry & Biotechnology