QSAR Study of octanol/water partition coefficient of organophosphorous compounds: Hybrid (GA/ MLR) Approach and Hybrid (GA/ ANN)

Rana Amiri, Djelloul Messadi, Amel Bouakkadia

Abstract


This study aims to predict the n-octanol/water partition coefficient (Kow) of 43 organophosphorous insecticides. Quantitative structure-property relationship analysis was performed on a series of 43 insecticides using twodifferents methods linear (Multiple Linear Regression)  and nonlinear (Artificial Neural Network), which correlate octanol-water partition coefficient (Kow) values of these chemicals to their structural descriptors. At first, the data set was separated with duplex algorithm into a training set (28 chemicals) and a test set (15 chemicals) for statistical external validation. Model with four descriptors was developed using as independent variables theoretical descriptors derived from DRAGON software when applying GA (Genetic Algorithm) - VSS (Variable Subset Selection) procedure. The values of statistical parameters R2, Q2ext, SDEPext and SDEC for MLR and ANN model were: (94.09 %; 92.43%; 0.533; 0.471), (97.24%; 92.17%; 0.466; 0.332), obtained for the three approaches are very similar, which confirm that our four parameters model is stable, robust and significant.


Keywords


octanol/water partition coefficient; molecular descriptors; QSPR methods

Full Text:

PDF (1,211 kB)

References


S. P. Bradbury, Tox. Lett. 79 (1995) 37(https://doi.org/10.1002/etc.5620160629)

A. P. Bearden, T. W. Schultz, Environ. Toxicol. Chem.16 (1997) 7

(https://doi.org/10.1016/0378-4274(95)03374-T)

X. J. Yao, M. C. Liu, X. Y. Zhang, Z. D. Hu, B. T. Fan, Analytica Chimica Acta 462 (2002) 101 (https://doi.org/10.1016/S0003-2670(02)00273-8)

H. Si, S. Yuan, K. Zhang, A. Fu, Y. B. Duan, Z. Hu, Chemometr. Intell. Lab. Syst. 90 (2008) 15 (https://doi.org/10.1016/j.chemolab.2007.06.011)

H. Y. Xu, J. Y. Zhang, J. W. Zou, X. S. Chen, J. Mol. Graph. Model. 26 (2008) 1076 (https://doi.org/10.1016/j.jmgm.2007.09.004)

F. Wania, D. Mackay, Environ. Pollut., 100 (1999) 223 (https://doi.org/10.1016/S0269-7491(99)00093-7)

S. W. Fisher, M. J. Lydy, J. Barger, P. F. Landrum, Environ. Toxicol. Chem. 12 (1993) 1307 (https://doi.org/10.1002/etc.5620120721)

C. J. Van Leeuwen, P. T. Vanderzandt, T. Aldenberg, H. J. M. Verhaar, J. L. M. Hermens, Environ. Toxicol. Chem. 11 (1992) 267 (https://doi.org/10.1002/etc.5620110216)

S. P. Niculescu, K. L. E. Kaiser, G. Schüürmann, Water Qual. Res. J. Can. 33 (1998) 153

(https://doi.org/10.2166/wqrj.1998.009)

S. L. Wong, Aquat. Toxicol. 6 (1985) 115 (https://doi.org/10.1016/0166-445X(85)90011-6)

M. Chessels, D. W. Hawker, D. W. Connell, Chemosphere. 22 (1991) 1175 (https://doi.org/10.1016/0045-6535(91)90213-W)

R. Todeshini, V. Consonni, M. Pavan, Dragon, Software for the Calculation of Molecular Descriptors, Release 5.3 for Windows, Milano; (2006)

T. Ferrari, A. Lombardo, E. Benfenati, Sci. Total Environ. 637 (2018) 1158 (https://doi.org/10.1016/j.scitotenv.2018.05.072)

A. Bouakkadia, L. Lourici, D. Messadi, Management of Environmental Quality 28 (2017) 579 (http://dx.doi.org/10.1108/MEQ-08-2015-0162)

H. Feng, Y. Chen, W. Yue, C Feng, Earth Environ. Sci. 153 (2018) 022035 (https://doi:10.1088/1755-1315/153/2/022035)

O. C. Hansen, Quantitative Structure-Activity Relationships (QSAR) and Pesticides, Teknologisk Institute. Pesticides Research No. 94 (2004).

HyperchemTM, Release 6.02 for Windows. Molecular Modeling system, (2000) (http://www.hyper.com/)

1R. Todeschini, V. Consonni, A. Mauri, M. Pavan, Dragon Software, version 5.4- Copyright TALETE srl, (2005).

R. D. Snee, Technometrics 19 (1977) 415 (https://doi.org/10.1080/00401706.1977.10489581)

R. Todeschini, D. Ballabio, V. Consonni, A. Mauri, M. Paven, MobyDigs - version 1.1 - Copyright TALETE srl, (2009) (http://www.talete.mi.it/)

R. Leardi, R. Boggia, M. Tarrile, J. Chemom. 6 (1992) 267(https://doi.org/10.1016/B978-012213810-2/50004-9)

J. Xu, H. Zhang, L. Wang, G. Liang, L. Wang, X. Shen, W. Xu, Spectrochim. Acta A, Mol. Biomol. Spectros. 76 (2010) 239 (https://doi.org/10.1016/j.saa.2010.03.027)

R. Todeschini, A. Maiocchi, V. Consonni, Chemom, Int. Lab. Syst. 46 (1999) 13 (https://doi.org/10.1016/S0169-7439(98)00124-5)

A. Tropsha, P. Gramatica, V. K. Grombar, QSAR Comb. Sci. 22 (2003) 69 (https://doi.org/10.1002/qsar.200390007)

M. Shen, C. Béguin, A. Golbraikh, J. P. Stables, H. Kohn, A. Tropsha, J. Med. Chem. 47 (2004) 2356 (https://pubs.acs.org/doi/abs/10.1021/jm030584q)

S. Weisberg, Applied Linear Regression, 3rdedn., John Wiley and Sons, Inc., New Jersey USA (2005).

SCAN- Software for Chemometric Analysis- version 1.1- for Windows, Minitab USA (1995).

J. Zupan, J. Gasteiger, Neural Networks in Chemistry and Drug Design; Wiley-VCH:

Weinheim, New York, USA, (1999).

A. Golbraikh, A. Tropsha, J. Mol. Graphics Modell. 20 (2002) 269 (https://doi.org/10.1016/S1093-3263(01)00123-1)

S. R. Gunn, Support Vector Machines for Classification and Regression, Technical Report, University of Southampton (1998), available at: http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf

N. Chen, W. Lu, J. Yang, G. Li, Support Vector Machine in Chemistry, Singapore: World Scientific Publishing Co. Pte. Ltd, (2004).




DOI: https://doi.org/10.2298/JSC190610090A

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)