Efficient structural and energetic screening of fullerene encapsulation in a large supramolecular double decker macrocycle

Main Article Content

Fabian Bohle
Stefan Grimme
https://orcid.org/0000-0002-5844-4371

Abstract

Recently, Tanaka et al. have synthesized an organometallic supra­mo­le­cular double decker macrocycle for encapsulating fullerene C70. We inves­tigate this captivating system consisting of about 500 atoms with the robust quantum mechanical tight binding method GFN2-xTB and evaluate our com­putational results against an experimentally measured change in association free energy (ΔGa). Further, GFN2-xTB was used to screen higher fullerene iso­mers and predict the best binding guest for this specific macrocycle.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
F. Bohle and S. Grimme, “Efficient structural and energetic screening of fullerene encapsulation in a large supramolecular double decker macrocycle”, J. Serb. Chem. Soc., vol. 84, no. 8, pp. 837–843, Aug. 2019.
Section
Special Issue Devoted to Prof. emeritus Miljenko Perić
Author Biography

Fabian Bohle, Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115 Bonn

Department: Mulliken Center for Theoretical Chemistry

Rank: M.Sc.

References

H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, Nature 318 (1985) 162 (https://doi.org/10.1038/318162a0)

W. Yan, S. M. Seifermann, P. Pierrat, S. Bräse, Org. Biomol. Chem. 13 (2015) 25 (https://doi.org/10.1039/C4OB01663G)

F. Diederich, M. Gómez-López, Chem. Soc. Rev. 28 (1999) 263 (https://doi.org/10.1039/A804248I)

S. Kawano, T. Fukushima, K. Tanaka, Angew. Chem. Int. Ed. 57 (2018) 14827 (https://dx.doi.org/10.1002/anie.201809167)

R. Sure, S. Grimme, J. Chem. Theory Comput. 11 (2015) 3785 (https://dx.doi.org/10.1021/ACS.JCTC.5B00296)

R. Sure, S. Grimme, Chem. Commun. 52 (2016) 9893 (https://dx.doi.org/10.1039/C6CC03664C)

C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 15 (2019) 1652 (https://dx.doi.org/10.1021/acs.jctc.8b01176)

S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 13 (2017) 1989 (https://dx.doi.org/10.1021/acs.jctc.7b00118)

M. Bursch, H. Neugebauer, S. Grimme, Angew. Chem. Int. Ed. Accepted, 2019 (https://doi.org/10.1002/anie.201904021)

V. Ásgeirsson, C. A. Bauer, S. Grimme, Chem. Sci. 8 (2017) 4879 (https://dx.doi.org/10.1039/C7SC00601B)

S. Grimme, J. Chem. Theory Comput. 15 (2019) 2847 (https://dx.doi.org/10.1021/acs.jctc.9b00143)

Y.Q. Zhang, F. Bohle, R. Bleith, G. Schnakenburg, S. Grimme, A. Gansäuer, Angew. Chem. Int. Ed. 57 (2018) 13528 (https://dx.doi.org/10.1002/anie.201808034)

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. B 72 (2016) 171 (http://dx.doi.org/10.1107/S2052520616003954)

David Tománek, Guide Through the Nanocarbon Jungle, Morgan & Claypool Publishers, San Rafael, CA, 2014 (http://dx.doi.org/10.1088/978-1-627-05273-3)

S. Grimme, C. Bannwarth, E. Caldeweyher, J. Pisarek, A. Hansen, J. Chem. Phys. 147 (2017) 161708 (https://dx.doi.org/10.1063/1.4991798)

J. G. Brandenburg, C. Bannwarth, A. Hansen, S. Grimme, J. Chem. Phys. 148 (2018) 064104 (https://dx.doi.org/10.1063/1.5012601)

TURBOMOLE V7.2.1 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989−2007, TURBOMOLE GmbH, since 2007; available from http://www. turbomole.com

E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys. 147 (2017) 034112 (https://dx.doi.org/10.1063/1.4993215)

E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, J. Chem. Phys. 150 (2019) 154122 (https://dx.doi.org/10.1063/1.5090222)

P. M. Zimmerman, J. Chem. Phys. 138 (2013) 184102 (https://dx.doi.org/10.1063/1.4804162)

W.-J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 8 (2010) 3118 (https://dx.doi.org/10.1039/b926828f).