Synthesis and characterization of copper(II) octaazamacrocyclic complexes with glycine derivatives. In vitro antiproliferative and antimicrobial evaluation of the Cu(II) and Co(II) analogous
Main Article Content
Abstract
T
Two new complexes with the general formula [Cu2(L)tpmc](ClO4)3·nH2O (tpmc = N,N¢,N¢¢,N¢¢¢-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane, L = N-methylglycine, n = 3; L = N,N-dimethylglycine, n = 2) were isolated and their composition, some physical and chemical properties and geometries were proposed based on elemental analysis (C, H, N), conductometric and magnetic measurements and spectroscopic data (UV–Vis, FTIR). It is evident that the complexes are binuclear and an exo coordination mode of the macrocyclic ligand in the boat conformation was proposed. The co-ligands are coordinated as a bridge using both oxygen atoms of the OCO- group. The cytotoxic activity of Cu(II) complexes as well as their Co(II) analogs, the starting ligands and the free salts were tested against human cervix adenocarcinoma cell line (HeLa), human chronic myelogenous leukemia cells (K562), human breast cancer cell line (MDA-MB-453), and a non-cancerous cell line, human embryonic lung fibroblast (MRC-5). The IC50 values for the Cu(II) complexes were from 21.6±0.04 to 66.1±0.8, and for the Co(II) analogs were within the range from 8.8±0.74 to 15.40±1.52. All four complexes were tested for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and the yeast Candida albicans.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
G. B. Bagihalli, P. G. Avaji, S. A. Patil, P. S. Badami, Eur. J. Med. Chem. 43 (2008) 2639 (https://dx.doi.org/10.1016/j.ejmech.2008.02.013)
Y. Wan, S. He, W. Li, Z. Tang, Anti Cancer Agents Med. Chem. 18 (2018) 1228 (https://dx.doi.org/10.2174/1871520618666180510113822)
Z. H. Chohan, M. Arif, M. A. Akhtar, C. T. Supuran, Bioinorg. Chem. Appl. 2006, ID 83131, 1 (https://dx.doi.org/10.1155/BCA/2006/83131)
H. Fałtynowicz, M. Daszkiewicz, R. Wysokinski, A. Adach, M. Cieslak-Golonka, Struct. Chem. 26 (2015) 1555 (https://dx.doi.org/10.1007/s11224-015-0631-7)
P. A. Vigato, S. Tamburini, Coord. Chem. Rev. 248 (2004) 1717 (https://dx.doi.org/10.1016/j.cct.2003.09.003)
W. Sibert, A. H. Cory, J. G. Cory, Chem. Commun. 2 (2002) 154 (https://dx.doi.org/10.1039/b107899m)
S. J. Paisey, P. J. Sadler, Chem. Commun. 3 (2004) 306 (https://dx.doi.org/10.1039/B312752B)
Qi.-Y. Yang, Q. Q. Cao, Q. P. Qin, C. X. Deng, H. Liang, Z. F. Chen, Int. J. Mol. Sci. 19 (2018) 1874 (https://dx.doi.org/10.3390/ijms19071874)
Z. Lakovidou, A. Papageorgiou, M. A. Demertzis, E. Mioglou, D. Mourelatos, A. Kotsis, P. N. Yadav, D. Kovala-Demertzi, Anti-Cancer Drugs 12 (2001) 65 (https://www.ncbi.nlm.nih.gov/pubmed/11272288)
A. Fetoh, K. A. Asla, A. A. El-Sherif, H. El-Didamony, G. M. Abu El-Reash, J. Mol. Struct. 1178 (2019) 524 (https://doi.org/10.1016/j.molstruc.2018.10.066)
P. M. Reddy, R. Rohini, E. Ravi Krishna, A. Hu, V. Ravinder, Int. J. Mol. Sci. 13 (2012) 4982 (https://dx.doi.org/10.3390/ijms13044982)
R. S. Prabhat, R. Singh, S. Pawar, A. Chauhan, J. Am. Sci. 6 (2010) 559 (http://ijsetr.org/wp-content/uploads/2016/10/IJSETR-VOL-5-ISSUE-10-2964-2967.pdf)
C. S. Dilip, V. Sivakumar, J. J. Prince, Indian J. Chem. Tech. 19 (2012) 351 (http://nopr.niscair.res.in/handle/123456789/14682)
M. Antonijević-Nikolić, J. Antić-Stanković, S. B. Tanasković, M. J. Korabik, G. Gojgić-
-Cvijović, G. Vučković, J. Mol. Struct. 1054–1055 (2013) 297 (https://doi.org/10.1016/j.molstruc.2013.10.006)
G. Vučković, S. B. Tanasković, M. Antonijević-Nikolić, V. Živković-Radovanović, G. Gojgić-Cvijović, J. Serb. Chem. Soc. 74 (2009) 629 (https://dx.doi.org/10.2298/JSC0906629V)
S. Chandrasekhar, W. L. Waltz, L. Prasad, J. W. Quail, Can. J. Chem. 75 (1997) 1363 (https://doi.org/10.1139/v97-164)
E. Asato, H. Toftlund, S. Kida, M. Mikuriya, K. S. Murray, Inorg. Chim. Acta 165 (1989) 207 (http://dx.doi.org/10.1016/S0020-1693(00)83241-7)
E. Konig, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer-Verlag, Berlin, 1966, p. 345
T. Mosmann, J. Immunol. Methods 65 (1983) 55 (http://dx.doi.org/10.1016/0022-1759(83)90303-4)
M. Ohno, T. Abe, J. Immunol. Methods 145 (1991) 199 (https://www.ncbi.nlm.nih.gov/pubmed/1765652)
W. J. Gear, Coord. Chem. Rev. 7 (1971) 81
(https://dx.doi.org/10.1016/S0010-8545(00)80009-0)
F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann. Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999, p. 854
G. Vučković, M. Antonijević, D. Poleti, J. Serb. Chem. Soc. 67 (2002) 677
Z. M. Miodragović, G. Vučković, V. M. Leovac, J. Serb. Chem. Soc. 66 (2001) 597 (https://doi.org/10.2298/JSC0109597M)
G. Vučković, M. Antonijević-Nikolić, S. B. Tanasković, V. Živković-Radovanović, J. Serb. Chem. Soc. 76 (2011) 719 (https://doi.org/10.2298/JSC101201062V)
A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam, 1984, p. 554
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., Wiley, New York, 1997, p. 23, 59, 83, 271 (ISBN:978-0-471-74493-1)
G. Deacon, R. J. Philips, Coord. Chem. Rev. 33 (1980) 227 (https://doi.org/10.1016/S0010-8545(00)80455-5)
A. Stănilă, C. Braicu, S. Stănilă, R. M. Pop, Not. Bot. Horti. Agrobot. Cluj Napoca 39 (2011) 124 (https://doi.org/10.15835/nbha3926847)
K. Carroll, J. Butel, S. Morse, Jawetz, Melnick & Adelbergs Medical Microbiology, 27th ed., McGraw-Hill Education, New York, 2016
Y. Arafat, S. Ali, S. Shahzadi, M. Shahid, Bioinorg. Chem. Applic. (2013) Article ID 351262 (http://dx.doi.org/10.1155/2013/351262)
J. B. Dalmarco, E. M. Dalmarco, J. Koelzer, M. G. Pizzolatti, T. S. Fröde, Int. J. Green Pharm. 4 (2010) 108 (http://dx.doi.org/10.22377/ijgp.v4i2.130).