A highly inducible β-galactosidase from Enterobacter sp.

Bestoon Ahmed Shaikhan, Kemal Güven, Fatma Matpan Bekler, Ömer Acer, Reyhan Gül Güven

Abstract


Enterobacter sp. 3TP2A isolated from petroleum station was found to produce a novel, highly inducible mesophilic intracellular β-galactosidase in the presence of lactose upto 76.5 U mg-1. The enzyme was purified to 17.3-fold after gel permeation chromatography with a yield of approximately 11 %. The optimium pH and temperature values of purified enzyme were found to be 8.0 9.0 and 35 oC, respectively. The Molecular weight of the enzyme was approx. 60 kDa of a single band by both SDS-PAGE and native-PAGE, as well as estimated by gel filtration chromatography. The enzyme was inhibited by Zn2+ and EDTA, while Cu2+ had strong inhibitory effect even at low concentrations. Activation by Mg2+ and inhibition by EDTA show that the enzyme is metal-dependent or a metalloenzyme. The enzyme was slightly activated by β-mer­captoethanol, while slightly inhibited by Iodoacetamide. On the other hand, PCMB inhibited the enzymatic activity to a great extent, whereas it was completely inhibited by N-ethylmaleimide. The Vmax and Km values were calculated as 0.701 μmol min-1 and 0.104 mM, respectively. The results indicated that the β-galactosidase Enterobacter sp. 3TP2A may well be a good candidate for use in biotechnology, particularly in the area of environment and health.


Keywords


β-galactosidase, Enterobacter, purification, characterization, inhibi¬tion

Full Text:

PDF (1,543 kB)

References


J.W.E. Sanders, C.C. Sanders, Clin. Microbiol. Rev. 10 (1997) 220.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC172917/pdf/100220.pdf

Y. Ren, Y. Ren, Z. Zhou, X. Guo, Y. Li, L. Feng, L. Wang, J. Bacteriol. 192 (2010) 2463.

https://doi.org/10.1128/JB.00067-10

J.L. Humann, M. Wildung, C.H. Cheng, T. Lee, J.E. Stewart, J.C. Drew, E.W. Triplett, D. Main, B.K. Schroeder, Stand. Genomic. Sci. 5 (2011) 279. https://doi.org/10.4056/sigs.2174950

M.L. Mezzatesta, F. Gona, S. Stefani, Future Microbiol. 7 (2012) 887. https://doi.org/10.2217/fmb.12.61

A. Davin-Regli, J-M. Page, Front Microbiol. 6 (2015) 392. https://doi.org/10.3389/fmicb.2015.00392

S. Erich, B. Kuschel, T. Schwarz, J. Ewert, N. Böhmer, F. Niehaus, J. Eck, S. Lutz-Wahl, T. Stressler, L. Fischer, J. Bacteriol. 210 (2015) 27. https://doi.org/10.1016/j.jbiotec.2015.06.411

K.V. Ramana, J.R Xavier, R.K. Sharma, Pharm. Biotechnol. Curr. Res. 1 (2017) 1.

http://www.imedpub.com/articles/recent-trends-in-pharmaceutical-biotechnology.pdf

H.N. Chen, M.L. Lee, W.K. Yu, Y.W. Lin, L.Y. Tsao, Pediatr Neonatol. 50 (2009) 3.

https://doi.org/10.1016/S1875-9572(09)60022-X

E. Amir, P. J. Whorwell, Allergy Frontiers: Clinical Manifestations. Springer Japan. 2009, 431.

https://doi.org/10.1007/978-4-431-88317-3_27

A. Ghatak, A.K. Guha, L. Ray, Indian J Biotechnol. 12 (2013) 523.

http://nopr.niscair.res.in/handle/123456789/26240

I. Tryland, L. Fiksdal, Appl. Environ. Microbiol. 64 (1998) 1018.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC106360/

J.R. Xavier, K.V. Ramana, R.K. Sharma, J. Food Biochem. 42 (2018) e12564.

https://doi.org/10.1111/jfbc.12564

D. Todorova-Balvay, I. Stoilova, S. Gargova, M.A. Vijayalakshmi, J. Mol. Recognit. 19 (2006) 299.

https://doi.org/10.1002/jmr.788

J. Natarajan, C. Christobell, D.M. Kumar, M.D. Balakumaran, M.R. Kumar, P.T. Kalaichelvan, World Appl. Sci. J. 17 (2012) 1466.

https://pdfs.semanticscholar.org/d74a/e1ebf26c1ac62d865f5b5db8a500dbc76148.pdf

M.N. Hung, B.H. Lee, Biotechnol. Lett. 20 (1998) 659.

https://link.springer.com/article/10.1023/A:1005314422383

L. Lu, M. Xiao, X. Xu, Z. Li, Y. Li, Biochem. Biophys. Res. Commun. 356 (2007) 78.

https://doi.org/10.1016/j.bbrc.2007.02.106

R. Gul-Guven, K. Guven, A. Poli, B. Nicolaus, Enzyme Microb. Technol. 40 (2007) 1570.

https://doi.org/10.1016/j.enzmictec.2006.11.006

L. Li, M. Zhang, Z. Jiang, L. Tang, Q. Cong, Food Chem. 112 (2009) 844.

https://doi.org/10.1016/j.foodchem.2008.06.058

L.L. Lu, M. Xiao, Z.Y. Li, Y.M. Li, F.S. Wang, Process Biochem. 44 (2009) 232.

https://doi.org/10.1016/j.procbio.2008.10.010

S. Campuzano, B. Serra, D. Llull, J.L. García, P. García, Appl. Environ. Microbiol. 75 (2009) 5972.

https://doi.org/10.1128/AEM.00618-09

N. Saishin, M. Ueta, A. Wada, I. Yamamoto, J. Biol. Micromol. 10 (2010) 23.

http://www.jsb.gr.jp/jbm/2009/0902_4.pdf

A.S.S.A. El-Kader, A.M. Ei-Dosouky, A. Abouwarda, S.M.A. Ali, M.I. Osman, J. Appl. Sci. Res. 8 (2012) 2379. http://www.aensiweb.com/old/jasr/jasr/2012/2379-2385.pdf

R. Sumathy, M. Vijayalakshmi, M. Deecaraman, Int. J. Appl. Biol. Pharm. Technol. 3 (2012) 1072.

http://academicinforma.com/journals/77/3/4

R.E. Huber, J. Lytton, E.B. Fung, J. Bacteriol. 141 (2013) 528.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC293655/?page=1

F. Matpan Bekler, P. Stougaard, K. Güven, R.G. Güven, Ö. Acer, Cell. Mol. Biol. 61 (2015), 71.

https://www.ncbi.nlm.nih.gov/pubmed/26115614

K. Boudjema, F. Fazouane-Naimi, K. Güven, F. Matpan Bekler, O. Acer, A. Hellal, Res. J. Biotechnol. 11 (2016), 35.

https://worldresearchersassociations.com/Archives/RJBT/Vol(11)2016/June2016.aspx

F. Matpan Bekler, Ö. Acer, S. Yalaz, K. Güven, Fresenius Env. Bull. 26 (2017), 2251. https://www.prt-parlar.de/download_feb_2017/

F. Matpan Bekler, S. Yalaz, R. Gul Guven, Ö. Acer, K. Güven, The Online J. Sci. Technol. 8 (2018) 32. https://www.tojsat.net/journals/tojsat/articles/v08i02/v08i02-06.pdf

S.F. Altschul, T.L. Madden, A.A. Schaeffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Nucleic Acids Res. 25 (1997) 3389. https://doi.org/10.1093/nar/25.17.3389

O.S. Kim, Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won, Int. J. Syst. Evol. Microbiol. 62 (2012) 716. https://doi.org/10.1099/ijs.0.038075-0

O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem. 193 (1951) 265.

http://www.jbc.org/content/193/1/265.long

U.K. Laemmli, Nature 227 (1970) 680. https://doi.org/10.1038/227680a0

P. Trinder, Ann Clin Biochem 6 (1969) 24. https://doi.org/10.1177/000456326900600108

A. Ghatak, A.K. Guha, L. Ray, Appl. Biochem. Biotechnol. 162 (2010) 1678.

https://doi.org/10.1007/s12010-010-8949-5

M.A. Khedr, S.E. Desouky, U.M. Badr, S.S. Elboudy, K.M. Khlil, J. Appl. Sci. Res. 9 (2013) 4809.

http://www.aensiweb.com/old/jasr/jasr/2013/4809-4822.pdf

N.H.M.R. Mozumder, M. Akhtaruzzaman, M.A. Bakr, F.T. Zohra, J. Sci. Res. 4 (2011), 239.

https://doi.org/10.3329/jsr.v4i1.8478

A. Ghatak, Int. J. Curr. Microbiol. App. Sci. 5 (2016) 492.

http://dx.doi.org/10.20546/ijcmas.2016.507.054

M.N. Hung, Z. Xia, N.T. Hu, B.H. Lee, App. Env. Microbiol. 67 (2001) 4256.

https://doi.org/10.1128/AEM.67.9.4256-4263.2001

R. Gul Guven, A. Kaplan, K. Guven, F. Matpan, M. Dogru, Biotechnol Bioprocess Eng. 16 (2011) 114.

https://doi.org/10.1007/s12257-010-0070-7

S. Princely, N.S. Basha, J.J. Kirubakaran, M.D. Dhanaraju, European J. Exp Biology 3 (2013) 242-251. http://www.imedpub.com/articles/biochemical-characterization-partial-purification-and-production-of-an-intracellular-betagalactosidase-from-streptococcus-thermoph.pdf

S. Chakraborti, R.K. Sani, U.C. Banerjee, R.C. Sobti, Journal Ind Microb Biotech, 24 (2000): 58-63. https://doi.org/10.1038/sj.jim.2900770




DOI: https://doi.org/10.2298/JSC190711141S

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)