A highly inducible β-galactosidase from Enterobacter sp.

Bestoon Ahmed Shaikhan, Kemal Güven, Fatma Matpan Bekler, Ömer Acer, Reyhan Gül Güven

Abstract


Enterobacter sp. 3TP2A isolated from a petroleum station was found to produce a novel, highly inducible mesophilic intracellular β-galactosidase in the presence of lactose up to 76.5 U mg-1. The enzyme was purified to 17.3-fold after gel permeation chromatography with a yield of approximately 11 %. The optimum pH and temperature values of the purified enzyme were found to be 8.0–9.0 and 35 °C, respectively. The molecular weight of the enzyme was approx. 60 kDa with a single band by both SDS-PAGE and native-PAGE, and estimated by gel filtration chromatography. The enzyme was inhibited by Zn2+ and EDTA, while Cu2+ had strong inhibitory effect even at low concentrations. Activation by Mg2+ and inhibition by EDTA show that the enzyme is metal-dependent or a metalloenzyme. The enzyme was slightly activated by 2-mer­captoethanol, while slightly inhibited by iodoacetamide. On the other hand, PCMB inhibited the enzymatic activity to a great extent, whereas it was com­pletely inhibited by N-ethylmaleimide. The Vmax and Km values were calcul­ated as 0.701 μmol min-1 and 0.104 mM, respectively. The results indicated that the β-galactosidase Enterobacter sp. 3TP2A might well be a good candi­date for use in biotechnology, particularly in the area of environment and health.


Keywords


β-galactosidase, Enterobacter, purification, characterization, inhibition

References


J. W. E. Sanders, C. C. Sanders, Clin. Microbiol. Rev. 10 (1997) 220 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC172917/pdf/100220.pdf)

Y. Ren, Y. Ren, Z. Zhou, X. Guo, Y. Li, L. Feng, L. Wang, J. Bacteriol. 192 (2010) 2463 (https://doi.org/10.1128/JB.00067-10)

J. L. Humann, M. Wildung, C. H. Cheng, T. Lee, J. E. Stewart, J. C. Drew, E. W. Triplett, D. Main, B. K. Schroeder, Stand. Genomic. Sci. 5 (2011) 279 (https://doi.org/10.4056/sigs.2174950)

M. L. Mezzatesta, F. Gona, S. Stefani, Future Microbiol. 7 (2012) 887 (https://doi.org/10.2217/fmb.12.61)

A. Davin-Regli, J. M. Page, Front Microbiol. 6 (2015) 392 (https://doi.org/10.3389/fmicb.2015.00392)

S. Erich, B. Kuschel, T. Schwarz, J. Ewert, N. Böhmer, F. Niehaus, J. Eck, S. Lutz-Wahl, T. Stressler, L. Fischer, J. Bacteriol. 210 (2015) 27 (https://doi.org/10.1016/j.jbiotec.2015.06.411)

K. V. Ramana, J. R. Xavier, R. K. Sharma, Pharm. Biotechnol. Curr. Res. 1 (2017) 1 (http://www.imedpub.com/articles/recent-trends-in-pharmaceutical-biotechnology.pdf)

H. N. Chen, M. L. Lee, W. K. Yu, Y. W. Lin, L. Y. Tsao, Pediatr. Neonatol. 50 (2009) 3 (https://doi.org/10.1016/S1875-9572(09)60022-X)

E. Amir, P. J. Whorwell, Allergy Frontiers: Clinical Manifestations, Springer, Tokyo, 2009, p. 431 (https://doi.org/10.1007/978-4-431-88317-3_27)

A. Ghatak, A. K. Guha, L. Ray, Indian J. Biotechnol. 12 (2013) 523 (http://nopr.niscair.res.in/handle/123456789/26240)

I. Tryland, L. Fiksdal, Appl. Environ. Microbiol. 64 (1998) 1018 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC106360/)

J. R. Xavier, K. V. Ramana, R. K. Sharma, J. Food Biochem. 42 (2018) e12564 (https://doi.org/10.1111/jfbc.12564)

D. Todorova-Balvay, I. Stoilova, S. Gargova, M. A. Vijayalakshmi, J. Mol. Recognit. 19 (2006) 299 (https://doi.org/10.1002/jmr.788)

J. Natarajan, C. Christobell, D. M. Kumar, M. D. Balakumaran, M. R. Kumar, P. T. Kalaichelvan, World Appl. Sci. J. 17 (2012) 1466 (https://pdfs.semanticscho¬lar.org/-d74a/e1ebf26c1ac62d865f5b5db8a500dbc76148.pdf)

M. N. Hung, B. H. Lee, Biotechnol. Lett. 20 (1998) 659 (https://link.springer.com/article/10.1023/A:1005314422383)

L. Lu, M. Xiao, X. Xu, Z. Li, Y. Li, Biochem. Biophys. Res. Commun. 356 (2007) 78 (https://doi.org/10.1016/j.bbrc.2007.02.106)

R. Gul-Guven, K. Guven, A. Poli, B. Nicolaus, Enzyme Microb. Technol. 40 (2007) 1570 (https://doi.org/10.1016/j.enzmictec.2006.11.006)

L. Li, M. Zhang, Z. Jiang, L. Tang, Q. Cong, Food Chem. 112 (2009) 844 (https://doi.org/10.1016/j.foodchem.2008.06.058)

L. L. Lu, M. Xiao, Z. Y. Li, Y. M. Li, F. S. Wang, Process Biochem. 44 (2009) 232 (https://doi.org/10.1016/j.procbio.2008.10.010)

S. Campuzano, B. Serra, D. Llull, J. L. García, P. García, Appl. Environ. Microbiol. 75 (2009) 5972 (https://doi.org/10.1128/AEM.00618-09)

N. Saishin, M. Ueta, A. Wada, I. Yamamoto, J. Biol. Micromol. 10 (2010) 23 (http://www.jsb.gr.jp/jbm/2009/0902_4.pdf)

A. S. S. A. El-Kader, A. M. Ei-Dosouky, A. Abouwarda, S .M. A. Ali, M. I. Osman, J. Appl. Sci. Res. 8 (2012) 2379 (http://www.aensiweb.com/old/jasr/jasr/2012/2379-2385.pdf)

R. Sumathy, M. Vijayalakshmi, M. Deecaraman, Int. J. Appl. Biol. Pharm. Technol. 3 (2012) 1072 (http://academicinforma.com/journals/77/3/4)

R. E. Huber, J. Lytton, E. B. Fung, J. Bacteriol. 141 (2013) 528 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC293655/?page=1)

F. Matpan Bekler, P. Stougaard, K. Güven, R. G. Güven, Ö. Acer, Cell. Mol. Biol. 61 (2015) 71 (https://www.ncbi.nlm.nih.gov/pubmed/26115614)

K. Boudjema, F. Fazouane-Naimi, K. Güven, F. Matpan Bekler, O. Acer, A. Hellal, Res. J. Biotechnol. 11 (2016) 35 (https://worldresearchersassociations.com/Archives/RJBT/-Vol(11)2016/June2016.aspx)

F. Matpan Bekler, Ö. Acer, S. Yalaz, K. Güven, Fresenius Env. Bull. 26 (2017) 2251 (https://www.prt-parlar.de/download_feb_2017/)

F. Matpan Bekler, S. Yalaz, R. Gul Guven, Ö. Acer, K. Güven, Online J. Sci. Technol. 8 (2018) 32 (https://www.tojsat.net/journals/tojsat/articles/v08i02/v08i02-06.pdf)

S. F. Altschul, T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, Nucleic Acids Res. 25 (1997) 3389 (https://doi.org/10.1093/nar/25.17.3389)

O. S. Kim, Y. J. Cho, K. Lee, S. H. Yoon, M. Kim, H. Na, S. C. Park, Y. S. Jeon, J. H. Lee, H. Yi, S. Won, Int. J. Syst. Evol. Microbiol. 62 (2012) 716 (https://doi.org/10.1099/ijs.0.038075-0)

O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265 (http://www.jbc.org/content/193/1/265.long)

U. K. Laemmli, Nature 227 (1970) 680 (https://doi.org/10.1038/227680a0)

P. Trinder, Ann. Clin. Biochem. 6 (1969) 24 (https://doi.org/10.1177/000456326900600108)

A. Ghatak, A. K. Guha, L. Ray, Appl. Biochem. Biotechnol. 162 (2010) 1678 (https://doi.org/10.1007/s12010-010-8949-5)

M. A. Khedr, S. E. Desouky, U. M. Badr, S. S. Elboudy, K. M. Khlil, J. Appl. Sci. Res. 9 (2013) 4809 (http://www.aensiweb.com/old/jasr/jasr/2013/4809-4822.pdf)

N. H. M. R. Mozumder, M. Akhtaruzzaman, M. A. Bakr, F. T. Zohra, J. Sci. Res. 4 (2011) 239 (https://doi.org/10.3329/jsr.v4i1.8478)

A. Ghatak, Int. J. Curr. Microbiol. App. Sci. 5 (2016) 492 (http://dx.doi.org/10.20546/ijcmas.2016.507.054)

M. N. Hung, Z. Xia, N. T. Hu, B. H. Lee, App. Env. Microbiol. 67 (2001) 4256 (https://doi.org/10.1128/AEM.67.9.4256-4263.2001)

R. Gul Guven, A. Kaplan, K. Guven, F. Matpan, M. Dogru, Biotechnol. Bioprocess. Eng. 16 (2011) 114 (https://doi.org/10.1007/s12257-010-0070-7)

S. Princely, N. S. Basha, J. J. Kirubakaran, M. D. Dhanaraju, Euro. J. Exp. Biol. 3 (2013) 242-251 (http://www.imedpub.com/articles/biochemical-characterization-partial-purification-and-production-of-an-intracellular-betagalactosidase-from-streptococcus-thermoph.pdf)

S. Chakraborti, R. K. Sani, U. C. Banerjee, R .C. Sobti, J. Ind. Microbiol. Biotechnol. 24 (2000) 58-63 (https://doi.org/10.1038/sj.jim.2900770).




DOI: https://doi.org/10.2298/JSC190711141S

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)