Modeling of chlorinated phenols adsorption on polyethylene and polyethylene terephtalate microplastic

Maja Lončarski, Aleksandra Tubić, Marijana Kragulj Isakovski, Branislav Jović, Tamara Apostolović, Jasmina Nikić, Jasmina Agbaba

Abstract


The role of microplastics (MPs) in the fate and transport of various pollutants in water matrices is of major concern, but is still relatively under­investigated. In order to consider the conditions in real aquatic environments, the changes to polyethylene (PE) structure during the fabrication of micro­plastic particles for specific uses should not be neglected. Thus, this work studies isolated PE from two types of personal care products, which are possible sources of microplastic contamination in aquatic environments. The adsorption affinity of these PE microplastics towards ionisable compounds was compared with those of standards of PE and polyethylene terephthalate (PET), using chlorinated phenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-tri­chloro­phenol and pentachloro­phe­nol) as adsorbates. The pseudo-second order kinetic model described well the sorption process for all chlorinated phenols on all four types of microplastic (R2 = 0.900 - 0.998). The kinetic study showed that sorption rates are mainly controlled by hydrophobic interactions and molecule size. Adsorption isotherms were best described by the Freundlich model for all MPs. Obtained results indicate that MPs can serve for the transport of the chlorinated phenols through the ambient waters.

Keywords


microplastics, ionisable organic pollutants, PE, PET

Full Text:

PDF (1,725 kB)

References


J. Li, K. Zhang, H. Zhang, Environ. Pollut. 237 (2018) 460-467 (https://doi.org/10.1016/j.envpol.2018.02.050)

L. S. Fendall, M. A. Sewell, Mar. Pollut. Bull. 58 (2009) 1225-1228 (https://doi.org/10.1016/j.marpolbul.2009.04.025)

M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway, R. Thompson, Environ. Sci. Technol. 45 (2011) 9175-9179 (https://doi.org/10.1021/es201811s)

B. Singh, N. Sharma, Polym. Degrad. Stab. 93 (2008) 561–584 (https://doi.org/10.1016/j.polymdegradstab.2007.11.008)

T. O’Brine, R. C. Thompson, Mar. Pollut. Bull. 60 (2010) 2279–2283 (https://doi.org/10.1016/j.marpolbul.2010.08.005)

S. Zhao, L. Zhu, D. Li, China. Environ. Pollut. 206 (2015) 597-604 (https://doi.org/10.1016/j.envpol.2015.08.027)

H. A. Nel, P. W. Froneman, Mar. Pollut. Bull. 101 (2015) 274-279 (https://doi.org/10.1016/j.marpolbul.2015.09.043)

A. A. Horton, A. Walton, D. J. Spurgeon, E. Lahive, C. Svendsen, Sci. Total. Environ. 586 (2017) 127-141 ( https://doi.org/10.1016/j.scitotenv.2017.01.190)

A. L. Andrady, M. A. Neal, Philos. Trans. R. Soc. Lond. B 364 (2009) 1977-1984 (https://doi.org/10.1098/rstb.2008.0304)

A. L. Andrady, Mar. Pollut. Bull. 119 (2017) 12–22 (https://doi.org/10.1016/j.marpolbul.2017.01.082)

M. Cole, P. Lindeque, C. Halsband, T. S. Galloway, Mar. Pollut. Bull. 62 (2011) 2588-2597 (https://doi.org/10.1016/j.marpolbul.2011.09.025)

R. Dris, H. Imhof, W. Sanchez, J. Gasperi, F. Galgani, B. Tassin, C. Laforsch, Environ. Chem. 12 (2015) 539-550 (https://doi.org/10.1071/EN14172)

I. A. O'Connor, L. Golsteijn, A. J. Hendriks, Mar. Pollut. Bull. 113 (2016) 17-24 (https://doi.org/10.1016/j.marpolbul.2016.07.021)

W. Wang, J. Wang, Chemosphere 193 (2018) 567-573 https://doi.org/10.1016/j.chemosphere.2017.11.078)

F. A. Caliman, M. Gavrilescu, CLEAN - Soil, Air, Water 37 (2009) 277-303 (https://doi.org/10.1002/clen.200900038)

L. A. Holmes, A. Turner, R. C. Thompson, Environ. Pollut. 160 (2012) 42–48 (https://doi.org/10.1016/j.envpol.2011.08.052)

H. Lee, W. J. Shim, J. H. Kwon, Sci. Total. Environ. 470–471 (2014) 1545–1552 (https://doi.org/10.1016/j.scitotenv.2013.08.023)

F. Wang, M. S. Kai, Y. L. Xiao, Chemosphere 119 (2015) 841-847 (https://doi.org/10.1016/j.chemosphere.2014.08.047)

C. M. Rochman, E. Hoh, B. T. Hentschel, S. Kaye, Environ. Sci. Technol. 47 (2013) 1646-1654 (https://doi.org/10.1021/es303700s)

A. Bakir, S. J. Rowland, R. C. Thompson, Environ. Pollut. 185 (2014) 16-23 (https://doi.org/10.1016/j.envpol.2013.10.007)

R. Beiras, T. Tato, Mar. Poll. Bull. 138 (2019) 58-62 (https://doi.org/10.1016/j.marpolbul.2018.11.029)

B. Xu, F. Liu, P. C. Brookes, J. Xu, Mar. Pollut. Bull. 131, Part A (2018) 191-196 (https://doi.org/10.1016/j.marpolbul.2018.04.027)

X. Guo, J. Wang, Mar. Pollut. Bull. 142 (2019) 1-14 (https://doi.org/10.1016/j.marpolbul.2019.03.019)

M. A. Keane, J. Chem. Technol. Biotechnol. 80 (2005) 1211-1222 (https://doi.org/10.1002/jctb.1325)

M. Pera-Titus, V. García-Molina, M. A. Baños, J. Giménez, S. Esplugas, Appl. Catal. B. Environ. 47 (2004) 219-256 (https://doi.org/10.1016/j.apcatb.2003.09.010)

B. Gunawardana, N. Singhal, P. Swedlund, Environ. Eng. Res. 16 (2011) 187-203 (https://doi.org/10.4491/eer.2011.16.4.187)

IARC (1999) Volume 71, International Agency for Research on Cancer, Lyon, France

IARC (2014) Volume 106, International Agency for Research on Cancer, Lyon, France

S. Ziajahromi, P. A. Neale, L. Rintoul, F. D. L. Leusch, Water Res. 112 (2017) 93-99 (https://doi.org/10.1016/j.watres.2017.01.042)

I. E. Napper, A. Bakir, S. J. Rowland, R. C. Thompson, Mar. Poll. Bull. 99 (2015) 178-185 (https://doi.org/10.1016/j.marpolbul.2015.07.029)

R. P. D’Amelia, S. Gentile, W. F. Nirode, L. Huang, W. J. Chem. Educ. 4, 2 (2016) 25-3 (https://doi.org/10.12691/wjce-4-2-1)

A. P. dos Santos Pereira, M. H. Prado da Silva, É. P. Lima Júnior, A. dos Santos Paula, F. J. Tommasini, Waste. Mat. Res. 20 (2017) 411-420 (http://dx.doi.org/10.1590/1980-5373-MR-2017-0734)

J‐M. Andanson, S. G. Kazarian, Macromol. Symp. 265 (2008) 195–204 (https://doi.org/10.1002/masy.200850521)

C. Goedecke, U. Mülow-Stollin, A. Hering, J. Richter, C. Piechotta, A. Paul, U. Braun, Proceeding of ICCE (2017), Oslo, Norway.

C. Wu, K. Zhang, X. Huang, J. Liu, Environ. Sci. Pollut. R. 23 (2016) 8819-8826 (https://doi.org/10.1007/s11356-016-6121-7)

W. H. Cheung, Y. S. Szeto, G. McKay, Bioresour. Technol. 98 (2007) 2897-2904 (https://doi.org/10.1016/j.biortech.2006.09.045)

F.-C. Wu, R.-L. Tseng, R.-S. Juang, Chem. Eng. J. 153 (2009) 1-8 (https://doi.org/10.1016/j.cej.2009.04.042)

T. Huffer, T. Hofmann, Environ. Pollut. 214 (2016) 194-201 (https://doi.org/10.1016/j.envpol.2016.04.018)

F. Wang, C. S. Wong , D. Chen , X. Lu , F. Wang, E. Y. Zeng, Water Res. 139 (2018) 208-219 (https://doi.org/10.1016/j.watres.2018.04.003)

M. Kragulj, J. Tričković, A. Kukovecz, B. Jović, J. Molnar, S. Rončević, Z. Kónya, B. Dalmacija, RSC Advances 5 (2015) 24920-24929 (https://doi.org/10.1039/C5RA03395K)

R. Lohmann, Environ. Sci. Technol. 46 (2012) 606−618 (https://doi.org/10.1021/es202702y)

I. Velzeboer, C. Kwadijk, A. A. Koelmans, Environ. Sci. Technol. 48 (2014) 4869-4876 (https://doi.org/10.1021/es405721v).




DOI: https://doi.org/10.2298/JSC190712124L

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)