Modelling of the adsorption of chlorinated phenols on polyethylene and polyethylene terephthalate microplastic

Main Article Content

Maja Lončarski
Aleksandra Tubić
Marijana Kragulj Isakovski
Branislav Jović
Tamara Apostolović
Jasmina Nikić
Jasmina Agbaba

Abstract

The role of microplastics (MPs) on the fate and transport of various pollutants in water matrices is of major concern, but it is still relatively under investigated. In order to consider the conditions in real aquatic environments, the changes to polyethylene (PE) structure during the fabrication of micro­plastic particles for specific uses should not be neglected. Thus, this work con­siders isolated PE from two types of personal care products, which are possible sources of microplastic contamination in aquatic environments. The adsorption affinity of these PE microplastics towards ionisable compounds was compared with those of standards of PE and polyethylene terephthalate (PET), using chlorinated phenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichloro­phenol and pentachlorophenol) as adsorbates. The pseudo-second order kinetic model described well the sorption process for all chlorinated phenols on all four types of MPs (R2 range: 0.900–0.998). The kinetic study showed that sorp­tion rates are mainly controlled by hydrophobic interactions and molecule size. Adsorp­tion isotherms were best described by the Freundlich model for all MPs. The obtained results indicate that MPs could serve for the transport of chlorinated phenols through ambient waters.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Lončarski, “Modelling of the adsorption of chlorinated phenols on polyethylene and polyethylene terephthalate microplastic”, J. Serb. Chem. Soc., vol. 85, no. 5, pp. 697–709, May 2020.
Section
Environmental Chemistry

References

J. Li, K. Zhang, H. Zhang, Environ. Pollut. 237 (2018) 460 (https://doi.org/10.1016/j.envpol.2018.02.050)

L. S. Fendall, M. A. Sewell, Mar. Pollut. Bull. 58 (2009) 1225 (https://doi.org/10.1016/j.marpolbul.2009.04.025)

M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway, R. Thompson, Environ. Sci. Technol. 45 (2011) 9175 (https://doi.org/10.1021/es201811s)

B. Singh, N. Sharma, Polym. Degrad. Stab. 93 (2008) 561 (https://doi.org/10.1016/j.polymdegradstab.2007.11.008)

T. OBrine, R. C. Thompson, Mar. Pollut. Bull. 60 (2010) 2279 (https://doi.org/10.1016/j.marpolbul.2010.08.005)

S. Zhao, L. Zhu, D. Li, China. Environ. Pollut. 206 (2015) 597 (https://doi.org/10.1016/j.envpol.2015.08.027)

H. A. Nel, P. W. Froneman, Mar. Pollut. Bull. 101 (2015) 274 (https://doi.org/10.1016/j.marpolbul.2015.09.043)

A. A. Horton, A. Walton, D. J. Spurgeon, E. Lahive, C. Svendsen, Sci. Total. Environ. 586 (2017) 127 ( https://doi.org/10.1016/j.scitotenv.2017.01.190)

A. L. Andrady, M. A. Neal, Philos. Trans. R. Soc. Lond., B 364 (2009) 1977 (https://doi.org/10.1098/rstb.2008.0304)

A. L. Andrady, Mar. Pollut. Bull. 119 (2017) 12 (https://doi.org/10.1016/j.marpolbul.2017.01.082)

M. Cole, P. Lindeque, C. Halsband, T. S. Galloway, Mar. Pollut. Bull. 62 (2011) 2588 (https://doi.org/10.1016/j.marpolbul.2011.09.025)

R. Dris, H. Imhof, W. Sanchez, J. Gasperi, F. Galgani, B. Tassin, C. Laforsch, Environ. Chem. 12 (2015) 539 (https://doi.org/10.1071/EN14172)

I. A. O'Connor, L. Golsteijn, A. J. Hendriks, Mar. Pollut. Bull. 113 (2016) 17 (https://doi.org/10.1016/j.marpolbul.2016.07.021)

W. Wang, J. Wang, Chemosphere 193 (2018) 567 https://doi.org/10.1016/j.chemosphere.2017.11.078)

F. A. Caliman, M. Gavrilescu, CLEAN - Soil Air Water 37 (2009) 277 (https://doi.org/10.1002/clen.200900038)

L. A. Holmes, A. Turner, R. C. Thompson, Environ. Pollut. 160 (2012) 42 (https://doi.org/10.1016/j.envpol.2011.08.052)

H. Lee, W. J. Shim, J. H. Kwon, Sci. Total. Environ. 470–471 (2014) 1545 (https://doi.org/10.1016/j.scitotenv.2013.08.023)

F. Wang, M. S. Kai, Y. L. Xiao, Chemosphere 119 (2015) 841 (https://doi.org/10.1016/j.chemosphere.2014.08.047)

C. M. Rochman, E. Hoh, B. T. Hentschel, S. Kaye, Environ. Sci. Technol. 47 (2013) 1646 (https://doi.org/10.1021/es303700s)

A. Bakir, S. J. Rowland, R. C. Thompson, Environ. Pollut. 185 (2014) 16 (https://doi.org/10.1016/j.envpol.2013.10.007)

R. Beiras, T. Tato, Mar. Poll. Bull. 138 (2019) 58 (https://doi.org/10.1016/j.marpolbul.2018.11.029)

B. Xu, F. Liu, P. C. Brookes, J. Xu, Mar. Pollut. Bull., A 131 (2018) 191 (https://doi.org/10.1016/j.marpolbul.2018.04.027)

X. Guo, J. Wang, Mar. Pollut. Bull. 142 (2019) 1 (https://doi.org/10.1016/j.marpolbul.2019.03.019)

M. A. Keane, J. Chem. Technol. Biotechnol. 80 (2005) 1211 (https://doi.org/10.1002/jctb.1325)

M. Pera-Titus, V. García-Molina, M. A. Baños, J. Giménez, S. Esplugas, Appl. Catal., B 47 (2004) 219 (https://doi.org/10.1016/j.apcatb.2003.09.010)

B. Gunawardana, N. Singhal, P. Swedlund, Environ. Eng. Res. 16 (2011) 187 (https://doi.org/10.4491/eer.2011.16.4.187)

IARC, International Agency for Research on Cancer, Lyon, France, Volume 71, 1999

IARC, , International Agency for Research on Cancer, Lyon, France, Volume 106, 2014

S. Ziajahromi, P. A. Neale, L. Rintoul, F. D. L. Leusch, Water Res. 112 (2017) 93 (https://doi.org/10.1016/j.watres.2017.01.042)

I. E. Napper, A. Bakir, S. J. Rowland, R. C. Thompson, Mar. Poll. Bull. 99 (2015) 178 (https://doi.org/10.1016/j.marpolbul.2015.07.029)

R. P. DAmelia, S. Gentile, W. F. Nirode, L. Huang, World J. Chem. Educ. 4 (2016) 25 (https://doi.org/10.12691/wjce-4-2-1)

A. P. dos Santos Pereira, M. H. Prado da Silva, É. P. Lima Júnior, A. dos Santos Paula, F. J. Tommasini, Waste Mat. Res. 20 (2017) 411 (http://dx.doi.org/10.1590/1980-5373-MR-2017-0734)

J.‐M. Andanson, S. G. Kazarian, Macromol. Symp. 265 (2008) 195 (https://doi.org/10.1002/masy.200850521)

C. Goedecke, U. Mülow-Stollin, A. Hering, J. Richter, C. Piechotta, A. Paul, U. Braun, in Proceedings of ICCE, Oslo, Norway, 2017

C. Wu, K. Zhang, X. Huang, J. Liu, Environ. Sci. Pollut. Res. 23 (2016) 8819 (https://doi.org/10.1007/s11356-016-6121-7)

W. H. Cheung, Y. S. Szeto, G. McKay, Bioresour. Technol. 98 (2007) 2897 (https://doi.org/10.1016/j.biortech.2006.09.045)

F.-C. Wu, R.-L. Tseng, R.-S. Juang, Chem. Eng. J. 153 (2009) 1 (https://doi.org/10.1016/j.cej.2009.04.042)

T. Huffer, T. Hofmann, Environ. Pollut. 214 (2016) 194 (https://doi.org/10.1016/j.envpol.2016.04.018)

F. Wang, C. S. Wong , D. Chen , X. Lu , F. Wang, E. Y. Zeng, Water Res. 139 (2018) 208 (https://doi.org/10.1016/j.watres.2018.04.003)

M. Kragulj, J. Tričković, A. Kukovecz, B. Jović, J. Molnar, S. Rončević, Z. Kónya, B. Dalmacija, RSC Adv. 5 (2015) 24920 (https://doi.org/10.1039/C5RA03395K)

R. Lohmann, Environ. Sci. Technol. 46 (2012) 606 (https://doi.org/10.1021/es202702y)

I. Velzeboer, C. Kwadijk, A. A. Koelmans, Environ. Sci. Technol. 48 (2014) 4869 (https://doi.org/10.1021/es405721v).

Most read articles by the same author(s)