Anticancer and antimicrobial properties of imidazolium based ionic liquids with salicylate anion
Main Article Content
Abstract
Ionic liquids (ILs) are well known for their physicochemical properties that recommend them for many purposes. However, many ILs are not environmentally friendly. Bearing these facts in mind, a series of imidazolium- and salicylate-based ILs with low general toxicity were designed and their pharmacological potential studied. Herein, their antiproliferative effect against human cancer cell lines and antimicrobial activity on selected Gram-positive and Gram-negative bacteria and Candida strains are presented. ILs with 1-butyl-
-3-methylimidazolium or imidazolium cation (IL 1 and compound 5), with the lowest dipole moments and highest lipophilicity, exerted highest cytotoxicity against colon and/or lung cancer cells, manifesting high selectivity to the normal cells. The most non-polar IL with the 1-butyl-3-methylimidazolium cation expressed the strongest anticancer potential, but it was also toxic against normal cells, although its cytotoxicity was less than the cytotoxic effect of commercially used chemotherapeutic agents. The same compounds, IL 1 and compound 5, expressed modest effect on the bacterial strain that causes serious lung diseases and pulmonary infections (Staphylococcus aureus) or which are included in colon cancer formation (Esherichia coli and Enterococcus faecalis). Salicylate itself was toxic against lung cancer cell line A549 and affected some Candida strains.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev. 117 (2017) 7132 (http://dx.doi.org/10.1021/acs.chemrev.6b00562)
I. M. Marrucho, L. C. Branco, L. P. N. Rebelo, Annu. Rev. Chem. Biomol. Eng. 5 (2014) 527 (http://doi.org/10.1146/annurev-chembioeng-060713-040024 )
A. Miskiewicz, P. Ceranowicz, M. Szymczak, K. Bartuś, P. Kowalczyk, Int. J. Mol. Sci. 19 (2018) 2779 (http://doi.org/10.3390/ijms19092779 )
F. Pfannkuch, H. Rettig, P. H. Stahl, in: Handbook of Pharmaceutical Salts: Properties, Selection and Use, P. H. Stahl, C. G. Wermuth, Eds., Wiley-VCH, Weinheim, 2002, p. 117
W. Gouveia, T. F. Jorge, S. Martins, M. Meireles, M. Carolino, C. Cruz, T. V. Almeida, M. E. Araújo, Chemosphere 104 (2014) 51 (https://doi.org/10.1016/j.chemosphere.2013.10.055)
P. Ranjan, B. S. Kitawat, M. Singh, RSC Adv. 4 (2014) 53634 (http://doi.org/10.1039/c4ra08370a )
M. Cvjetko Bubalo, K. Radošević, A. Tomica, I. Slivac, J. Vorkapić-Furač, V. G. Srček, Arh Hig. Rada Toksikol. 63 (2012) 15 (http://doi.org/10.2478/10004-1254-63-2012-2132)
Z. Chen, B. Dai, W. Zhang, W. Guan, N. Liu, K. Liu, RSC Adv. 6 (2016) 96908 (http://doi.org/10.1039/c6ra14311c )
B. Peric, J. Sierra, E. Martí, R. Cruañas, M. A. Garau, Ecotoxicol. Environ. Saf. 115 (2015) 257 (https://doi.org/10.1016/j.ecoenv.2015.02.027 )
M. Cvjetko Bubalo, K. Hanousek, K. Radošević, V. Gaurina Srček, T. Jakovljević, I. Radojčić Redovniković, Ecotoxicol. Environ. Saf. 101 (2014) 116 (http://doi.org/10.1016/j.ecoenv.2013.12.022 )
S. Stolte, M. Matzke, J. Arning, A. Böschen, W. R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem. 9 (2007) 1170 (http://doi.org/10.1039/b711119c )
M. Vraneš, A. Tot, S. Jovanović-Šanta, M. Karaman, S. Dožić, K. Tešanović, V. Kojić, S. Gadžurić, RSC Adv. 6 (2016) 96289 (http://doi.org/10.1039/c6ra16182k )
A. Rashin, L. Young, I.A. Topol, S.K. Burt, Chem. Phys. Lett. 230 (1994) 182 (https://doi.org/10.1016/0009-2614(94)01150-8)
T. Mosmann, J. Immunol. Methods 65 (1983) 55
S. S. Jovanović-Šanta, S. Andrić, N. Andrić, G. Bogdanović, J. A. Petrović, Med. Chem. Res. 20 (2011) 1102 (http://doi.org/10.1007/s00044-010-9442-y )
S. Dasari, P. B. Tchounwou, Eur. J. Pharmacol. 740 (2014) 364 (http://doi.org/10.1016/j.ejphar.2014.07.025 )
E. J. Park, H. K. Kwon, Y. M. Choi, H. J. Shin, S. Choi, PLoS One 7 (2012) 44990 (http://doi.org/10.1371/journal.pone.0044990 )
A. Sotto, V. Foulongne, D. Sirot, R. Labia, J. Jourdan, Int. J. Antimicrob. Agents 19 (2002) 75 (https://doi.org/10.1016/S0924-8579(01)00465-4 )
Clinical Laboratory Standards Institute CLSI M07-A9, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard, 9th ed., Wayne, PA, USA, 2008
Clinical and Laboratory Standard Institute CLSI M27-A3 and supplement S3 reference, Method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard, 3rd ed., Wayne, PA, USA, 2008
R. A. Kumar, N. Papaïconomou, J. M. Lee, J. Salminen, D. S. Clark, J. M. Prausnitz, Environ. Toxicol. 24 (2009) 388 (https://doi.org/10.1002/tox.20443)
M. Stasiewicz, E. Mulkiewicz, R. Tomczak-Wandzel, J. Kurmirska, E. M. Siedlecka, M. Go1ebiowski, J. Gajdus, M. Czerwicka, P. Stepnowski, Ecotoxicol. Environ. Saf. 71 (2008) 157 (https://doi.org/10.1016/j.ecoenv.2007.08.011)
S. Stolte, J. Arning, U. Bottin-Weber, A. Mȕller, W. R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem. 9 (2007) 760 (https://doi.org/10.1039/b711119c)
T. P. T. Pham, C. W. Cho, Y. S. Yun, Water Res. 44 (2010) 352 (https://doi.org/10.1016/j.watres.2009.09.030)
S. V. Malhotra, V. Kumar, Bioorg. Med. Chem. Lett. 20 (2010) 581 (https://doi.org/10.1016/j.bmcl.2009.11.085)
S. V. Malhotra, V. Kumar, C. Velez, B. Zayas, MedChemComm 5 (2014) 1404 (https://doi.org/10.1039/c4md00161c)
P. Y. Chen, Y. T. Chang, Electrochim. Acta 75 (2012) 339 (https://doi.org/10.1016/j.electacta.2012.05.024)
A. Dimitrijević, T. Trtić-Petrović, M. Vraneš, S. Papović, A. Tot, S. Dožić, S. Gadžurić, J. Chem. Eng. Data 61 (2016) 549 (https://doi.org/10.1021/acs.jced.5b00697)
T. Trtić-Petrović, A. Dimitrijević, N. Zdolšek, J. Đorđević, A. Tot, M. Vraneš, S. Gadžurić, Anal. Bioanal. Chem. 410 (2018) 155 (https://doi.org/10.1007/s00216-017-0705-z )
L. Klampfer, J. Cammenga, H. G. Wisniewski, S. D. Nimer, Blood 93 (1999) 2386
M. F. McCarty, K. I. Block, Integr. Cancer Ther. 5 (2006) 252 (https://doi.org/10.1177/1534735406291499)
A. Rosell, E. Monsó, N. Soler, F. Torres, J. Angrill, G. Riise, R. Zalacaín, J. Morera, A. Torres, Arch. Intern. Med. 165 (2005) 891 (https://doi.org/10.1001/archinte.165.8.891)
M. I. Ahmed, S. Mukherjee, Cochrane Database Syst. Rev. 3 (2018) CD011581 (https://doi.org/10.1002/14651858.CD011581.pub3)
World health organization, Antibiotic resistance, 2018, https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance, accessed 24/01/2019
S. H. Duncan, P. Louis, H. J. Flint, Lett. Appl. Microbiol. 44 (2007) 343 (https://doi.org/10.1111/j.1472-765X.2007.02129.x)
A. M. Sheflin, A. K. Whitney, T. L. Weir, Curr. Oncol. Rep. 16 (2014) 406 (https://doi.org/10.1007/s11912-014-0406-0 )
P. Ball, PNAS 114 (2017) 13327 (https://doi.org/10.1073/pnas.1703781114)
M. A. Alem, L. J. Douglas, Antimicrob. Agents Chemother. 48 (2004) 41 (https://doi.org/10.1128/aac.48.1.41-47.2004)
S. Stepanović, D. Vuković, M. Jesić, L. Ranin, J. Chemother. 16 (2004) 134 (https://doi.org/10.1179/joc.2004.16.2.134)
R. Deva, R. Ciccoli, L. Kock, S. Nigam, FEMS Microbiol. Lett. 198 (2001) 37 (https://doi.org/10.1111/j.1574-6968.2001.tb10616.x).