Antioxidative response of tomato genotypes to late blight infection

Sladjana Medić-Pap, Dario Danojević, Dejan Prvulović, Sonja Tančić-Živanov, Janko Červenski

Abstract


Wild species are widely used as potential sources of resistance of tomato to late blight (causal agent Phytophthora infestans). Biochemical response of wild and cultivated tomato genotypes with different level of resistance to P. infestans was assessed through total phenolic and flavonoid content and antioxidative capacity. Totally, six genotypes were included in the research - three cultivated tomato varieties and three wild species. Wild genotypes Solanum pimpinellifolium S 220 and Solanum habrochaites had a significantly lower infection rate compared to other tested genotypes. After the disease assessment on the leaves, the biochemical analyses were performed. Grouping of the wild accessions according to PCA analysis indicate similar reaction to the LB infection. Furthermore, late blight trait is closer to cultivated genotypes. Although the phenolics and flavonoids have high importance in the reaction of tomato plants to late blight infection, these traits are not closely related to wild species and the disease. According to this study, the antioxidative tests which indicate a response of wild species to late blight infection are TAA (Total Antioxidant Activity), FRAP (Ferric-reducing Antioxidant Power) and ABTS (Radical Cation Scavenging Activity).


Keywords


phenolics, flavonoids, Solanum pimpinellifolium, TAA, FRAP; ABTS.

Full Text:

PDF (1,304 kB)

References


J. Zdravković, Ž. Marković, M. Zdravković, M. Mijatović, N. Pavlović, Genetika 44 (2012) 701 (http://doi:10.2298/GENSR1203701Z)

M. Nowicki, E. Kozik, M.R. Foolad in Translational genomics for crop breeding R.Varshney, R. Tuberosa Ed(s)., John Wiley&Sons Ltd., New Jersey, 2013, p. 484

E. Ohlson, M. Foolad, Plant Breed. 134 (2015) 461 (https://doi.org/10.1111/pbr.12273)

A. Drenth, M. Janssen, F. Govers, 1995. Plant Path. 44 (1995):86 (https://doi.org/10.1111/j.1365-3059.1995.tb02719.x)

D. Panthee, F. Chen, Curr. Genomics 11 (2010) 30 (https://doi:10.2174/138920210790217927)

S. Medić-Pap, D. Danojević, A. Takač, S. Maširević, J. Červenski, V. Popović, Ratar.Povrt. 54 (2017) 87 (https://doi:10.5937/ratpov54-12966)

M. Nowicki, M. Foolad, M. Nowakowska, E. Kozik, Plant Dis. 96 (2012) 4 (https://doi.org/10.1094/PDIS-05-11-0458)

U. Gisi, F. Walder, Z. Resheat-Eini, D. Edel, H. Sierotzki, J. Phytopath. 159 (2011) 223 (https://doi.org/10.1111/j.1439-0434.2010.01753.x)

V. Lattanzio, V.M. Lattanzio, A. Cardinali, in Phytochemistry Advances in Research F. Imperato Ed., Research Signpost, Kerala, 2006, p. 23

S. Mandal, A Mitra, N. Mallick, Physiol. Mol. Plant. Pathol. 72 (2008) 56 (https://doi.org/10.1016/j.pmpp.2008.04.002)

F. Helepciuc, M. Mitoi, A. Manole-Păunescua, F. Aldea, A. Brezeanua, C. Cornea, Rom. Biotech. Lett. 19 (2014) 9366 (https://e-repository.org/rbl/vol.19/iss.3/9.pdf)

M. Racchi, Antioxidants 2 (2013) 340 (https://doi.org/10.3390/antiox2040340)

J. Oszmiański, J. Kolniak-Ostek, A. Biernat, Molecules 20 (2015) 2176 (https://doi.org/10.3390/molecules20022176)

J. Mierziak, K. Kostyn, A. Kulma, Molecules 19 (2014) 16240 (https://doi.org/10.3390/molecules191016240)

B. Skadhauge, K. Thomsen, D. von Wettstein, Hereditas 126 (1997) 147 (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1997.00147.x)

G. Dai, M. Nicole, C. Andary, C. Martinez, E. Bresson, B. Boher, J. Daniel, J. Geiger, Physiol. Mol. Plant Pathol. 49 (1996) 285 (https://doi.org/10.1006/pmpp.1996.0055)

EPPO/OEPP Standards: Efficacy evaluation of fungicides PP 1/65 (3) (2013)

V. Nagavani, T. Raghava Rao, Adv. Biol. Res. 4 (2010) 159 (https://www.idosijournals.org/abr/4(3)/3.pdf)

A. Saha, R. Rahman, M. Shahriar, S. Saha, N. Al Azad, S. Das, J. Pharmacogn. Phytochem. 2 (2013) 181 (https://pdfs.semanticscholar.org/692d/95dd7807109584404b9b2baa494ecb16222f.pdf)

H.Y. Lai, Y.Y. Lim, IJESD 2 (2011) 442 (http://:doi:10.7763/IJESD.2011.V2.166)

P. Valentão, E. Fernandes, F. Carvalho, P. Andrade, R. Seabra, M. Bastos, J. Agric. Food Chem. 50 (2002) 4989 (https://:doi:10.1021/jf020225o)

N. Miller, C. Rice-Evans, M. Davies, V. Gopinathan, A. Milner, Clin. Sci. 84 (1993) 407 (https://doi.org/10.1042/cs0840407)

M. Kalaskar, S. Surana, J. Chil. Chem. Soc. 59 (2014) 2299 (https://dx.doi.org/10.4067/S0717-97072014000100012)

M. Fooland, H. Merk, H. Ashrafi, CRC Crit. Rev. Plant Sci. 27 (2008) 75 (https://doi.org/10.1080/07352680802147353)

M. Nowakowska, M. Nowicki, U. Kłosinska, R. Maciorowski, E. Kozik, PLoS One 9 (2014) e109328. (http://:doi:10.1371/journal.pone.0109328)

M. Kim, M. Mutschler, Tomato Genetics Cooperative Report 540 (2000) 23 (https://tgc.ifas.ufl.edu/vol50/Volume50.pdf)

M. Fooland, M. Sullenberger, E. Ohlson, B. Gugino, Plant Breed. 133 (2014) 401 (https://doi.org/10.1111/pbr.12172)

K. Akhtar, M. Saleem, Q. Iqbal, M. Asghar, A. Hameed, N. Sarwar, J. Plant Pathol. 98 (2016) 421 (https://dx.doi.org/10.4454/JPP.V98I3.002)

S. Medić-Pap, D. Prvulović, A. Takač, S. Vlajić, D. Danojević, A. Takač, S. Maširević, Genetika 47 (2015) 1099 (https://:doi:10.2298/GENSR1503099M)

S. Kumar, A. Panday, Sci. World J. Article ID 162750 (2013) 16 (https://dx.doi.org/10.1155/2013/162750)

V. Čeksterytė, B. Kurtinaitienė, P. Rimantas Venskutonis, A. Pukalskas, R. Kazernavičiūtė, J. Balžekas, Czech. J. Food Sci. 34 (2016) 133 (https://doi.org/10.17221/312/2015-CJFS)

S.B. Nimse, D. Pal, RSC Adv. 5 (2015) 27986 (https://:doi:10.1039/C4RA13315C)

D. Kasote, S. Katyare, M. Hegde, H. Bae, Int. J. Biol. Sci. 11 (2015) 982 (http://:doi: 10.7150/ijbs.12096)

N.T. Keen, Adv. Bot. Res. 30 (1999) 291 (https://:doi:10.1016/S0065-2296(08)60230-X)

Widmark A., The Late Blight Pathogen, Phytophthora infestans Interaction with the Potato Plant and Inoculum Sources: doctoral dissertation, Swedish University of Agricultural Sciences, Uppsala, 2010, p. 67

K. Yao, V. De Luca, N. Brisson Plant Cell 7 (1995) 1787 (https://doi.org/10.1105/tpc.7.11.1787)

R. Hückelhoven, Annu. Rev. Phytopathol. 45 (2007) 101 (https://doi.org/10.1146/annurev.phyto.45.062806.094325)

E. Miedes, R. Vanholme, W. Boerjan, A. Molina, Front. Plant Sci. 5 (2014) 358 (https://doi.org/10.3389/fpls.2014.00358)

K. Kulbat, Biotech. Food Sci. 80 (2016) 97 (https://repozytorium.p.lodz.pl/bitstream/handle/11652/1613/Role_phenolic_compounds_Kulbat_2016.pdf?sequence=1&isAllowed=y)

E. Kużniak, M. Skłodowska, Planta 222 (2005) 192 (https://doi.org/10.1007/s00425-005-1514-8)

M. Henriquez, L. Adam, F. Daayf, Plant Physiol. Biochem. 57 (2012) 8 (https://doi.org/10.1016/j.plaphy.2012.04.013)

V. Vleeshouwers, W. van Dooijeweert, F. Govers, S. Kamoun, L. Colon, Planta 210 (2000) 853 (https://doi.org/10.1007/s004250050690)

A. Hardham, L. Blackman, Australas. Plant Pathol. 39 (2010) 29 (https://doi.org/10.1071/AP09062).




DOI: https://doi.org/10.2298/JSC190731134M

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)