Antioxidative response of tomato genotypes to late blight infection

Slađana Medić-Pap, Dario Danojević, Dejan Prvulović, Sonja Tančić-Živanov, Janko Červenski

Abstract


Wild species are widely used as potential sources of resistance of tomato to late blight (LB) (causal agent Phytophthora infestans). The bio­chemical response of wild and cultivated tomato genotypes with different levels of resistance to P. infestans was assessed through the total phenolic and flavonoid content and antioxidative capacity. In total, six genotypes were inc­luded in the research – three cultivated tomato varieties and three wild species. The wild genotypes Solanum pimpinellifolium S 220 and Solanum habro­chaites had a significantly lower infection rate compared to the other tested genotypes. After disease assessment on the leaves, biochemical analyses were performed. Grouping of the wild accessions according to principal component analysis (PCA) analysis indi­cated similar reaction to LB infection. Further­more, late blight trait is closer to cultivated genotypes. Although the phenolics and flavonoids have high impor­tance in the reaction of tomato plants to late blight infection, these traits are not closely related to wild species and the disease. According to this study, the antioxidative tests that indicate a response of wild species to late blight infect­ion are total antioxidant activity (TAA), ferric-reducing antioxidant power (FRAP) and radical cation scavenging acti­vity (ABTS).


Keywords


phenolics; flavonoids; Solanum pimpinellifolium; antioxidative tests

Full Text:

PDF (2,243 kB)

References


J. Zdravković, Ž. Marković, M. Zdravković, M. Mijatović, N. Pavlović, Genetika 44 (2012) 701 (http://doi:10.2298/GENSR1203701Z)

M. Nowicki, E. Kozik, M. R. Foolad, in Translational genomics for crop breeding, R. Varshney, R. Tuberosa, Eds., Wiley, Hoboken, NJ, 2013, p. 484

E. Ohlson, M. Foolad, Plant Breed. 134 (2015) 461 (https://doi.org/10.1111/pbr.12273)

A. Drenth, M. Janssen, F. Govers, 1995. Plant Path. 44 (1995):86 (https://doi.org/10.1111/j.1365-3059.1995.tb02719.x)

D. Panthee, F. Chen, Curr. Genomics 11 (2010) 30 (https://doi:10.2174/138920210790217927)

S. Medić-Pap, D. Danojević, A. Takač, S. Maširević, J. Červenski, V. Popović, Ratar. Povrt. 54 (2017) 87 (https://doi:10.5937/ratpov54-12966)

M. Nowicki, M. Foolad, M. Nowakowska, E. Kozik, Plant Dis. 96 (2012) 4 (https://doi.org/10.1094/PDIS-05-11-0458)

U. Gisi, F. Walder, Z. Resheat-Eini, D. Edel, H. Sierotzki, J. Phytopath. 159 (2011) 223 (https://doi.org/10.1111/j.1439-0434.2010.01753.x)

V. Lattanzio, V. M. Lattanzio, A. Cardinali, in Phytochemistry Advances in Research, F. Imperato, Ed., Research Signpost, Kerala, 2006, p. 23

S. Mandal, A Mitra, N. Mallick, Physiol. Mol. Plant. Pathol. 72 (2008) 56 (https://doi.org/10.1016/j.pmpp.2008.04.002)

F. Helepciuc, M. Mitoi, A. Manole-Păunescua, F. Aldea, A. Brezeanua, C. Cornea, Rom. Biotech. Lett. 19 (2014) 9366 (https://e-repository.org/rbl/vol.19/iss.3/9.pdf)

M. Racchi, Antioxidants 2 (2013) 340 (https://doi.org/10.3390/antiox2040340)

J. Oszmiański, J. Kolniak-Ostek, A. Biernat, Molecules 20 (2015) 2176 (https://doi.org/10.3390/molecules20022176)

J. Mierziak, K. Kostyn, A. Kulma, Molecules 19 (2014) 16240 (https://doi.org/10.3390/molecules191016240)

B. Skadhauge, K. Thomsen, D. von Wettstein, Hereditas 126 (1997) 147 (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1997.00147.x)

G. Dai, M. Nicole, C. Andary, C. Martinez, E. Bresson, B. Boher, J. Daniel, J. Geiger, Physiol. Mol. Plant Pathol. 49 (1996) 285 (https://doi.org/10.1006/pmpp.1996.0055)

EPPO/OEPP, Standards: Efficacy evaluation of fungicides, PP 1/65 (3), 2013

V. Nagavani, T. Raghava Rao, Adv. Biol. Res. 4 (2010) 159 (https://www.idosijournals.org/abr/4(3)/3.pdf)

A. Saha, R. Rahman, M. Shahriar, S. Saha, N. Al Azad, S. Das, J. Pharmacogn. Phytochem. 2 (2013) 181 (https://pdfs.semanticscholar.org/692d/95dd7807109584404b9b2baa494ecb16222f.pdf)

H. Y. Lai, Y. Y. Lim, IJESD 2 (2011) 442 (http://:doi:10.7763/IJESD.2011.V2.166)

P. Valentão, E. Fernandes, F. Carvalho, P. Andrade, R. Seabra, M. Bastos, J. Agric. Food Chem. 50 (2002) 4989 (https://:doi:10.1021/jf020225o)

N. Miller, C. Rice-Evans, M. Davies, V. Gopinathan, A. Milner, Clin. Sci. 84 (1993) 407 (https://doi.org/10.1042/cs0840407)

M. Kalaskar, S. Surana, J. Chil. Chem. Soc. 59 (2014) 2299 (https://dx.doi.org/10.4067/S0717-97072014000100012)

M. Fooland, H. Merk, H. Ashrafi, CRC Crit. Rev. Plant Sci. 27 (2008) 75 (https://doi.org/10.1080/07352680802147353)

M. Nowakowska, M. Nowicki, U. Kłosinska, R. Maciorowski, E. Kozik, PLoS One 9 (2014) e109328. (http://:doi:10.1371/journal.pone.0109328)

M. Kim, M. Mutschler, Tomato Genetics Cooperative Report 540 (2000) 23 (https://tgc.ifas.ufl.edu/vol50/Volume50.pdf)

M. Fooland, M. Sullenberger, E. Ohlson, B. Gugino, Plant Breed. 133 (2014) 401 (https://doi.org/10.1111/pbr.12172)

K. Akhtar, M. Saleem, Q. Iqbal, M. Asghar, A. Hameed, N. Sarwar, J. Plant Pathol. 98 (2016) 421 (https://dx.doi.org/10.4454/JPP.V98I3.002)

S. Medić-Pap, D. Prvulović, A. Takač, S. Vlajić, D. Danojević, A. Takač, S. Maširević, Genetika 47 (2015) 1099 (https://:doi:10.2298/GENSR1503099M)

S. Kumar, A. Panday, Sci. World J. (2013) Article ID 162750 (https://dx.doi.org/10.1155/2013/162750)

V. Čeksterytė, B. Kurtinaitienė, P. Rimantas Venskutonis, A. Pukalskas, R. Kazernavičiūtė, J. Balžekas, Czech. J. Food Sci. 34 (2016) 133 (https://doi.org/10.17221/312/2015-CJFS)

S. B. Nimse, D. Pal, RSC Adv. 5 (2015) 27986 (https://10.1039/C4RA13315C)

D. Kasote, S. Katyare, M. Hegde, H. Bae, Int. J. Biol. Sci. 11 (2015) 982 (http://:doi: 10.7150/ijbs.12096)

N. T. Keen, Adv. Bot. Res. 30 (1999) 291 (https://:doi:10.1016/S0065-2296(08)60230-X)

A. Widmark, PhD Thesis, Swedish University of Agricultural Sciences, Uppsala, 2010, p. 67

K. Yao, V. De Luca, N. Brisson, Plant Cell 7 (1995) 1787 (https://doi.org/10.1105/tpc.7.11.1787)

R. Hückelhoven, Annu. Rev. Phytopathol. 45 (2007) 101 (https://doi.org/10.1146/annurev.phyto.45.062806.094325)

E. Miedes, R. Vanholme, W. Boerjan, A. Molina, Front. Plant Sci. 5 (2014) 358 (https://doi.org/10.3389/fpls.2014.00358)

K. Kulbat, Biotech. Food Sci. 80 (2016) 97 (https://repozytorium.p.lodz.pl/bitstream/handle/11652/1613/Role_phenolic_compounds_Kulbat_2016.pdf?sequence=1&isAllowed=y)

E. Kużniak, M. Skłodowska, Planta 222 (2005) 192 (https://doi.org/10.1007/s00425-005-1514-8)

M. Henriquez, L. Adam, F. Daayf, Plant Physiol. Biochem. 57 (2012) 8 (https://doi.org/10.1016/j.plaphy.2012.04.013)

V. Vleeshouwers, W. van Dooijeweert, F. Govers, S. Kamoun, L. Colon, Planta 210 (2000) 853 (https://doi.org/10.1007/s004250050690)

A. Hardham, L. Blackman, Australas. Plant Path. 39 (2010) 29 (https://doi.org/10.1071/AP09062).




DOI: https://doi.org/10.2298/JSC190731134M

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)