Fenton process combined with precipitation for the removal of Direct Blue 1 dye: A new approach

Isabel Espinoza, Christian Sandoval Pauker, Luis Ramos Guerrero, Paul Vargas Jentzsch, Florinella Muñoz Bisesti

Abstract


Azo dyes are recalcitrant pollutants present in effluents of several industries. Due to their chemical stability, their degradation is complex by con­ventional technologies. Advanced Oxidation Processes, such as Fenton, can be applied for the removal of recalcitrant compounds. However, these methods are still costly. In this work, Fenton and precipitation treatments were combined for the removal (i.e. decolorization) of direct blue 1 (DB1), as an option to decre­ase operational costs. The individual treatments were studied separately using DB1 solutions 0.04 mmol L-1 to determine the effects of the parameters involved in each process. For the Fenton treatment, the c(Fe2+) : c(H2O2) molar ratio that allowed the highest DB1 decolorization was 1:40. Regarding preci­pi­ta­tion, the highest dye decolorization was achieved at a pH value of 6.0. Moreover, it was determined that a minimum c(DB1):c(Fe2+) molar ratio of 1 : 7.7 is needed to al­low the decolorization of the dye by precipitation. Fenton assisted with preci­pi­ta­tion tests were performed with DB1 solutions 0.09 mmol L-1 and using a c(DB1) : c(Fe2+) molar ratio of 1 : 7.3 (which allows only partial precipitation of DB1). The results suggested that the dye can be treated by a Fenton process for 5 min and then precipitated to achieve almost a total decolorization of the dye (97.79 %).

Keywords


advanced oxidation processes; azo dyes; degradation of dyes; hydrogen peroxide, ferrous sulfate

Full Text:

PDF (1,292 kB)

References


A. Bafana, S. S. Devi, T. Chakrabarti, Environ. Rev. 19 (2011) 350 (https://doi.org/10.1139/a11-018)

R. Saraf, C. Shivakumara, S. Behera, H. Nagabhushana, N. Dhananjaya, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136 (2015) 348 (https://doi.org/10.1016/j.saa.2014.09.038)

A. Tripathi, S. K. Srivastava, Int. J. Biosci. Biochem. Bioinforma. 1 (2011) 37 (https://doi.org/10.7763/IJBBB.2011.V1.7)

K. Meerbergen, S. Crauwels, K. A. Willems, R. Dewil, J. Van Impe, L. Appels, B. Lievens, J. Biosci. Bioeng. 124 (2017) 668 (https://doi.org/10.1016/j.jbiosc.2017.07.005)

M. Arslan, S. Sayin, M. Yilmaz, Water. Air. Soil Pollut. 224 (2013) 1527 (https://doi.org/10.1007/s11270-013-1527-z)

Z. Liu, L. Zhang, F. Dong, J. Dang, K. Wang, D. Wu, J. Zhang, J. Fang, ACS Appl. Nano Mater. 1 (2018) 4170 (https://doi.org/10.1021/acsanm.8b00930)

H. T. Van, L. H. Nguyen, T. K. Hoang, T. P. Tran, A. T. Vo, T. T. Pham, X. C. Nguyen, Sep. Purif. Technol. 224 (2019) 431 (https://doi.org/10.1016/j.seppur.2019.05.048)

L. Bilińska, M. Gmurek, S. Ledakowicz, Chem. Eng. J. 306 (2016) 550 (https://doi.org/10.1016/j.cej.2016.07.100)

C. Sandoval, G. Molina, P. Vargas Jentzsch, J. Pérez, F. Muñoz, J. Adv. Oxid. Technol. 20 (2017) (https://doi.org/10.1515/jaots-2017-0006)

E. Yabalak, B. Külekçi, A. M. Gizir, J. Environ. Sci. Heal. Part A (2019) (https://doi.org/10.1080/10934529.2019.1647749)

M. A. Oturan, J.-J. Aaron, Crit. Rev. Environ. Sci. Technol. 44 (2014) 2577 (https://doi.org/10.1080/10643389.2013.829765)

J.-H. Sun, S.-P. Sun, G.-L. Wang, L.-P. Qiao, Dye. Pigment. 74 (2007) 647 (https://doi.org/10.1016/j.dyepig.2006.04.006)

A. Cihanoǧlu, G. Gündüz, M. Dükkancı, Water Sci. Technol. 76 (2017) 2793 (https://doi.org/10.2166/wst.2017.416)

S. Wang, Dye. Pigment. 76 (2008) 714 (https://doi.org/10.1016/j.dyepig.2007.01.012)

S.-P. Sun, C.-J. Li, J.-H. Sun, S.-H. Shi, M.-H. Fan, Q. Zhou, J. Hazard. Mater. 161 (2009) 1052 (https://doi.org/10.1016/j.jhazmat.2008.04.080)

A. Maslahati Roudi, S. Chelliapan, W. H. M. Wan Mohtar, H. Kamyab, Water 10 (2018) 595 (https://doi.org/10.3390/w10050595)

T.-H. Kim, C. Park, J. Yang, S. Kim, J. Hazard. Mater. 112 (2004) 95 (https://doi.org/10.1016/j.jhazmat.2004.04.008)

D. E. Santiago, O. González-Díaz, J. Araña, E. Pulido Melián, J. Pérez-Peña, J. M. Doña-Rodríguez, J. Photochem. Photobiol. A Chem. 353 (2018) 240 (https://doi.org/10.1016/j.jphotochem.2017.11.038)

S. O. Ganiyu, E. D. van Hullebusch, M. Cretin, G. Esposito, M. A. Oturan, Sep. Purif. Technol. 156 (2015) 891 (https://doi.org/10.1016/j.seppur.2015.09.059)

B. K. Shanmugam, S. N. Easwaran, A. S. Mohanakrishnan, C. Kalyanaraman, S. Mahadevan, J. Environ. Manage. 242 (2019) 106 (https://doi.org/10.1016/j.jenvman.2019.04.075)

A. Azizi, M. R. Alavi Moghaddam, R. Maknoon, E. Kowsari, J. Hazard. Mater. 299 (2015) 343 (https://doi.org/10.1016/j.jhazmat.2015.06.044)

N. Kulik, Y. Panova, M. Trapido, Sep. Sci. Technol. 42 (2007) 1521 (https://doi.org/10.1080/01496390701290185)

S.-T. Ong, P.-S. Keng, W.-N. Lee, S.-T. Ha, Y.-T. Hung, Water 3 (2011) 157 (https://doi.org/10.3390/w3010157)

J. Duan, J. Gregory, Adv. Colloid Interface Sci. 100–102 (2003) 475 (https://doi.org/10.1016/S0001-8686(02)00067-2)

W. Sun, M. Tang, Y. Sun, Y. Xu, H. Zheng, Can. J. Chem. Eng. 96 (2018) 1256 (https://doi.org/10.1002/cjce.23069)

X. Xiao, Y. Sun, W. Sun, H. Shen, H. Zheng, Y. Xu, J. Zhao, H. Wu, C. Liu, Can. J. Chem. Eng. 95 (2017) 1245 (https://doi.org/10.1002/cjce.22752)

W. Baran, A. Makowski, W. Wardas, Chemosphere 53 (2003) 87 (https://doi.org/10.1016/S0045-6535(03)00435-1)

M. Pérez, F. Torrades, X. Domènech, J. Peral, Water Res. 36 (2002) 2703 (https://doi.org/10.1016/S0043-1354(01)00506-1)

C. L. Hsueh, Y. H. Huang, C. C. Wang, C. Y. Chen, Chemosphere 58 (2005) 1409 (https://doi.org/10.1016/j.chemosphere.2004.09.091)

X.-R. Xu, Z.-Y. Zhao, X.-Y. Li, J.-D. Gu, Chemosphere 55 (2004) 73 (https://doi.org/10.1016/j.chemosphere.2003.11.017)

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al, Gaussian, Inc., Wallingford CT, 2016.

S. Papić, D. Vujević, N. Koprivanac, D. Šinko, J. Hazard. Mater. 164 (2009) 1137 (https://doi.org/10.1016/j.jhazmat.2008.09.008)

A. D. Bokare, W. Choi, J. Hazard. Mater. 275 (2014) 121 (https://doi.org/10.1016/j.jhazmat.2014.04.054)

K. Davididou, E. Chatzisymeon, L. Perez-Estrada, I. Oller, S. Malato, J. Hazard. Mater. (2018) (https://doi.org/10.1016/j.jhazmat.2018.03.016)

A. S. Giri, A. K. Golder, J. Environ. Sci. (2018) (https://doi.org/10.1016/j.jes.2018.09.016)

R. Kılınçarslan, E. Erdem, H. Kocaokutgen, Transit. Met. Chem. 32 (2007) 102 (https://doi.org/10.1007/s11243-006-0134-x)

S. Parra, V. Nadtotechenko, P. Albers, J. Kiwi, J. Phys. Chem. B 108 (2004) 4439 (https://doi.org/10.1021/jp031127o)

S. Sinha, S. Das, R. Sikari, S. Parua, P. Brandaõ, S. Demeshko, F. Meyer, N. D. Paul, Inorg. Chem. 56 (2017) 14084 (https://doi.org/10.1021/acs.inorgchem.7b02238)

M. Szymczyk, A. El-Shafei, H. S. Freeman, Dye. Pigment. 72 (2007) 8 (https://doi.org/10.1016/j.dyepig.2005.07.009)

A. R. Kennedy, P. C. Andrikopoulos, J.-B. Arlin, D. R. Armstrong, N. Duxbury, D. Graham, J. B. A. Kirkhouse, Chem. - A Eur. J. 15 (2009) 9494 (https://doi.org/10.1002/chem.200802555)

W. H. Ojala, E. A. Sudbeck, L. K. Lu, T. I. Richardson, R. E. Lovrien, W. B. Gleason, J. Am. Chem. Soc. 118 (1996) 2131 (https://doi.org/10.1021/ja951121f)

K. Lemr, M. Holc̆apek, P. Jandera, A. Lyc̆ka, Rapid Commun. Mass Spectrom. 14 (2000) 1881 (https://doi.org/10.1002/1097-0231(20001030)14:20<1881::AID-RCM107>3.0.CO;2-I)

J.-W. Lee, S.-P. Choi, R. Thiruvenkatachari, W.-G. Shim, H. Moon, Dye. Pigment. 69 (2006) 196 (https://doi.org/10.1016/j.dyepig.2005.03.008)

B. Shi, G. Li, D. Wang, C. Feng, H. Tang, J. Hazard. Mater. 143 (2007) 567 (https://doi.org/10.1016/j.jhazmat.2006.09.076)

B. Kordestani, R. Jalilzadeh Yengejeh, A. Takdastan, A. K. Neisi, Microchem. J. 146 (2019) 286 (https://doi.org/10.1016/j.microc.2019.01.013)

J. B. Parsa, M. Golmirzaei, M. Abbasi, J. Ind. Eng. Chem. 20 (2014) 689 (https://doi.org/10.1016/j.jiec.2013.05.034)




DOI: https://doi.org/10.2298/JSC190804119E

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)