Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents - Review

Milena Stevanović, Marija Djošić, Ana Janković, Kyong Yop Rhee, Vesna Mišković-Stanković


Increasing need for improved, compatible bone tissue implants led to the intensive research of novel biomaterials, especially hydroxyapatite (HAP)-
-based composite materials on titanium and titanium alloy surfaces. Owing to its excellent biocompatibility and osteoinductivity properties, hydroxyapatite is often used as part of composite biomaterials aimed for orthopedic implant applications. In order to overcome persistent problems of bacterial infection, various antimicrobial agents and materials and their incorporation in such med­ical devices were investigated. This paper represents a comprehensive review of single-step electrodeposition on titanium of hydroxy­apati­te/chi­to­san/gra­phene composite coatings loaded with silver and antibiotic gentamicin as anti­bacterial agents. The improvement of mechanical and adhesive proper­ties of deposited composite coatings was achieved by graphene and chitosan addit­ion, while desirable antibacterial properties were introduced by including anti­biotic genta­micin and silver. The biocompatibility of electrodeposited HAP and HAP-based composite coatings was evaluated by MTT testing, indicating a non-cytotoxic effect and high potential for future medical use as orthopedic implant coating.


electrophoretic deposition; composite; hydroxyapatite; bone implants; antibacterial coating

Full Text:

PDF (3,267 kB)


O. O. Van der Biest, L. J. Vandeperre, Ann. Rev. Mater. Sci. 29 (1999) 327 (http://dx.doi.org/10.1146/annurev.matsci.29.1.327)

L. Besra, M. Liu, Prog. Mater. Sci. 52 (2007) 1 (http://dx.doi.org/10.1016/j.pmatsci.2006.07.001)

I. Zhitomirsky, L. Gal-Or, J. Mater. Sci. Mater. Med. 8 (1997) 213 (http://dx.doi.org/10.1023/A:1018587623231)

H. Qi, S. Heise, J. Zhou, K. Schuhladen, Y. Yang, N. Cui, R. Dong, S. Virtanen, Q. Chen, A. R. Boccaccini, T. Lu, ACS Appl. Mater. Interfaces 11 (2019) 8625 (http://dx.doi.org/10.1021/acsami.9b01227)

A. Janković, S. Eraković, M. Mitrić, I. Z. Matić, Z. D. Juranić, G. C. P. Tsui, C. Tang, V. Mišković-Stanković, K. Y. Rhee, S. J. Park, J. Alloys Compd. 624 (2015) 148 (http://dx.doi.org/10.1016/j.jallcom.2014.11.078)

S. Heise, C. Forster, S. Heer, H. Qi, J. Zhou, S. Virtanen, T. Lu, A. R. Boccaccini, Electrochim. Acta 307 (2019) 318 (http://dx.doi.org/10.1016/j.electacta.2019.03.145)

E. Avcu, F. E. Baştan, H. Z. Abdullah, M. A. U. Rehman, Y. Y. Avcu, A. R. Boccaccini, Prog. Mater. Sci. 103 (2019) 69


W. R. Lacefield, Ann. N. Y. Acad. Sci. 523 (1988) 72 (http://dx.doi.org/10.1111/j.1749-6632.1988.tb38501.x)

W. Suchanek, M. Yoshimura, J. Mater. Res. 13 (2017) 94 (http://dx.doi.org/10.1557/JMR.1998.0015)

H. Zhou, J. Lee, Acta Biomater. 7 (2011) 2769 (http://dx.doi.org/10.1016/j.actbio.2011.03.019)

M. Ðošić, S. Eraković, A. Janković, M. Vukašinović-Sekulić, I. Z. Matić, J. Stojanović, K. Y. Rhee, V. Mišković-Stanković, S. J. Park, J. Ind. Eng. Chem. 47 (2017) 336 (http://dx.doi.org/10.1016/j.jiec.2016.12.004)

L. Zhao, P. K. Chu, Y. Zhang, Z. Wu, J. Biomed. Mater. Res., B: Appl. Biomater. 91 (2009) 470–480 (http://dx.doi.org/10.1002/jbm.b.31463)

B. Kasemo, Interface 49 (1983) 832 (http://dx.doi.org/10.1016/0022-3913(83)90359-1)

F. Frajkorová, E. Molero, P. Montero, M. C. Gomez-Guillen, A. J. Sanchez-Herencia, B. Ferrari, J. Eur. Ceram. Soc. 36 (2016) 343 (http://dx.doi.org/10.1016/j.jeurceramsoc.2015.07.005)

A. Tozar, İ. H. Karahan, Surf. Coatings Technol. 340 (2018) 167 (http://dx.doi.org/10.1016/j.surfcoat.2018.02.034)

V. Ozhukil Kollath, Q. Chen, S. Mullens, J. Luyten, K. Traina, A. R. Boccaccini, R. Cloots, J. Mater. Sci. 51 (2016) 2338 (http://dx.doi.org/10.1007/s10853-015-9543-6)

Q. Chen, L. Cordero-Arias, J. A. Roether, S. Cabanas-Polo, S. Virtanen, A. R. Boccaccini, Surf. Coatings Technol. 233 (2013) 49 (http://dx.doi.org/10.1016/j.surfcoat.2013.01.042)

M. Li, Q. Liu, Z. Jia, X. Xu, Y. Shi, Y. Cheng, Y. Zheng, T. Xi, S. Wei, Appl. Surf. Sci. 284 (2013) 804 (http://dx.doi.org/10.1016/j.apsusc.2013.08.012)

Z. Zhong, J. Ma, J. Biomater. Appl. 32 (2017) 399 (http://dx.doi.org/10.1177/0885328217723501)

D. Raafat, H. G. Sahl, Microb. Biotechnol. 2 (2009) 186 (http://dx.doi.org/10.1111/j.1751-7915.2008.00080.x)

M. Stevanović, M. Đošić, A. Janković, V. Kojić, M. Vukašinović-Sekulić, J. Stojanović, J. Odović, M. Crevar Sakač, K. Y. Rhee, V. Misković-Stanković, ACS Biomater. Sci. Eng. 4 (2018) 3994 (http://dx.doi.org/10.1021/acsbiomaterials.8b00859)

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, R. S. Ruoff, Nature 442 (2006) 282 (http://dx.doi.org/10.1038/nature04969)

M. Zhang, Y. Li, Z. Su, G. Wei, Polym. Chem. 6 (2015) 6107 (http://dx.doi.org/10.1039/c5py00777a)

Y. Chen, Y. Feng, J. G. Deveaux, M. A. Masoud, F. S. Chandra, H. Chen, D. Zhang, L. Feng, Minerals 9 (2019) 68 (http://dx.doi.org/10.3390/min9020068)

S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, ACS Nano 5 (2011) 6971 (http://dx.doi.org/10.1021/nn202451x)

H. M. Hegab, A. Elmekawy, L. Zou, D. Mulcahy, C. P. Saint, M. Ginic-Markovic, Carbon 105 (2016) 362 (http://dx.doi.org/10.1016/j.carbon.2016.04.046)

J. Hasan, R. J. Crawford, E. P. Ivanova, Trends Biotechnol. 31 (2013) 295 (http://dx.doi.org/10.1016/j.tibtech.2013.01.017)

M. Guzman, J. Dille, S. Godet, Nanomedicine Nanotechnology, Biol. Med. 8 (2012) 37 (http://dx.doi.org/10.1016/j.nano.2011.05.007)

K. J. Woo, C. K. Hye, W. K. Ki, S. Shin, H. K. So, H. P. Yong, Appl. Environ. Microbiol. 74 (2008) 2171 (http://dx.doi.org/10.1128/AEM.02001-07)

L. Prokuski, J. Am. Acad. Orthop. Surg. 16 (2008) 283 (http://dx.doi.org/10.5435/00124635-200805000-00007)

V. Antoci, C. S. Adams, N. J. Hickok, I. M. Shapiro, J. Parvizi, Clin. Orthop. Relat. Res. (2007) 200 (http://dx.doi.org/10.1097/BLO.0b013e31811ff866)

A. D. Hanssen, Clin. Orthop. Relat. Res. (2005) 91 (http://dx.doi.org/10.1097/01.blo.0000175713.30506.77)

A. Rudin, A. Healey, C. A. Phillips, D. W. Gump, B. R. Forsyth, Med. Clin. North Am. 54 (1970) 1305 (http://dx.doi.org/10.1016/S0025-7125(16)32596-2)

K. Kanellakopoulou, E. J. Giamarellos-Bourboulis, Drugs 59 (2000) 1223 (http://dx.doi.org/10.2165/00003495-200059060-00003)

J. R. Porter, T. T. Ruckh, K. C. Popat, Biotechnol. Prog. 25 (2009) 1539 (http://dx.doi.org/10.1002/btpr.246)

A. Janković, S. Eraković, M. Vukašinović-Sekulić, V. Mišković-Stanković, S. J. Park, K. Y. Rhee, Prog. Org. Coat 83 (2015) 1 (http://dx.doi.org/10.1016/j.porgcoat.2015.01.019)

L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, K. Yang, Biomaterials 30 (2009) 1512 (http://dx.doi.org/10.1016/j.biomaterials.2008.12.001)

B. G. X. Zhang, D. E. Myers, G. G. Wallace, M. Brandt, P. F. M. Choong, Int. J. Mol. Sci. 15 (2014) 11878 (http://dx.doi.org/10.3390/ijms150711878)

S. Eraković, A. Janković, I. Z. Matić, Z. D. Juranić, M. Vukašinović-Sekulić, T. Stevanović, V. Miskovic-Stankovic, Mater. Chem. Phys. 142 (2013) 521 (http://dx.doi.org/10.1016/j.matchemphys.2013.07.047)

A. Janković, S. Eraković, A. Dindune, D. Veljović, T. Stevanović, D. Janaćković, V. Miskovic-Stankovic, J. Serb. Chem. Soc. 77 (2012) 1609 (http://dx.doi.org/10.2298/JSC120712086J)

S. M. Barinov, J. V. Rau, S. N. Cesaro, J. Ďurišin, I. V. Fadeeva, D. Ferro, L. Medvecky, G. Trionfetti, J. Mater. Sci. Mater. Med. 17 (2006) 597 (http://dx.doi.org/10.1007/s10856-006-9221-y)

C. C. Wu, S. Te Huang, T. W. Tseng, Q. L. Rao, H. C. Lin, J. Mol. Struct. 979 (2010) 72 (http://dx.doi.org/10.1016/j.molstruc.2010.06.003)

Y. Liu, J. Huang, H. Li, J. Mater. Chem. B 1 (2013) 1826 (http://dx.doi.org/10.1039/c3tb00531c)

M. Djošić, V. Paníć, J. Stojanovíć, M. Mitríć, V. Miškovíć-Stankovíć, Colloids Surfaces A Physicochem. Eng. Asp. 400 (2012) 36 (http://dx.doi.org/10.1016/j.colsurfa.2012.02.040)

V. Mišković-Stanković, A. Janković, S. Eraković, K. Yop Rhee, Eurasian Chem. J. 17 (2014) 3 (http://dx.doi.org/10.18321/ectj189)

E. M. El-Sayed, A. Omar, M. Ibrahim, W. I. Abdel-Fattah, J. Comput. Theor. Nanosci. 6 (2009) 1663 (http://dx.doi.org/10.1166/jctn.2009.1228)

K. Ishikawa, P. Ducheyne, S. Radin, J. Mater. Sci. Mater. Med. 4 (1993) 165 (http://dx.doi.org/10.1007/BF00120386)

E.E. Berry, J. Inorg. Nucl. Chem. 29 (1967) 317 (https://doi.org/10.1016/0022-1902(67)80033-2)

J. Zawadzki, H. Kaczmarek, Carbohydr. Polym. 80 (2010) 395 (http://dx.doi.org/10.1016/j.carbpol.2009.11.037)

T. I. Ivanova, O. V. Frank-Kamenetskaya, A. B. Kol’tsov, V. L. Ugolkov, J. Solid State Chem. 160 (2001) 340 (http://dx.doi.org/10.1006/jssc.2000.9238)

R. P. Aquino, R. Adami, S. Liparoti, G. Della Porta, Int. J. Pharm. 440 (2013) 188 (http://dx.doi.org/10.1016/j.ijpharm.2012.07.074)

V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, A. Buasri, Adv. Mater. Sci. Eng. (2013) 1 (http://dx.doi.org/10.1155/2013/923403)

F. A. López, A. L. R. Mercê, F. J. Alguacil, A. López-Delgado, J. Therm. Anal. Calorim. 91 (2008) 633 (http://dx.doi.org/10.1007/s10973-007-8321-3)

G. Sjögren, G. Sletten, E. J. Dahl, J. Prosthet. Dent. 84 (2000) 229 (http://dx.doi.org/10.1067/mpr.2000.107227)

C. McManamon, J. P. De Silva, P. Delaney, M. A. Morris, G. L. W. Cross, Mater. Sci. Eng., C 59 (2016) 102 (http://dx.doi.org/10.1016/j.msec.2015.09.103).

DOI: https://doi.org/10.2298/JSC190821092S

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)