Pseudo zwitterionic microvesicles for sustained urea release

Main Article Content

Iram Bibi
Tasleem Kousar
Syed Waqar Hussain Shah
Wajid Rehman
Farman Ali

Abstract

Zwitterionic microvesicles formed by catanionic system, based on sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide, have been investigated for sustained urea release using UV–visible absorption spectro­s­copy. The change in variables such as temperature, sonication time and initial urea concentration was related to urea entrapment efficiency and release from microvesicles. Korsmeyer–Peppas model was applied to highlight release mechanism and kinetics. Both diffusion and erosion were responsible for urea release and rate constant varied with change in conditions. The quantification of association between urea and catanionic vesicles in terms of binding cons­tant (Kbin) and binding free energy showed that urea binding was thermodyn­am­ic­ally favored. Our results indicate that biocompatible pseudo-zwitterionic vesicles have enormous potential to act as sustained release system for nitro­genous fertilizers such as urea.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. Bibi, T. Kousar, S. W. H. Shah, W. Rehman, and F. Ali, “Pseudo zwitterionic microvesicles for sustained urea release”, J. Serb. Chem. Soc., vol. 85, no. 4, pp. 493–503, Apr. 2020.
Section
Physical Chemistry

References

O. León, A. Muñoz-Bonilla, D. Soto, J. Ramirez, Y. Marquez, M. Colina, M. Fernández-

-García, J. Polym. Environ. 26 (2018) 728 (https://doi.org/10.1007/s10924-017-0981-x)

C. O. Dimkpa, P. S. Bindraban, J. Agric. Food Chem. 66 (2018) 6462 (https://doi.org/10.1021/acs.jafc.7b02150)

X. Yu, B. Li, Particuology 45 (2019) 124 (https://doi.org/10.1016/j.partic.2018.09.005)

R. KiranTiwari, S. Krishnamoorthi, K. Kumar, J. Environ. Chem. Eng. 7 (2019) 103162 (https://doi.org/10.1016/j.jece.2019.103162)

H. H. Ku, K. Hayashi, R. Agbisit, G. Villegas-Pangga, Sci. Total Environ. 601–602 (2017) 1254 (http://dx.doi.org/10.1016/j.scitotenv.2017.05.277)

C. Tolescu, I. Fierascu, C. Neamtu, I. Anton, R. C. Fierascu, J. Serbian Chem. Soc. 79 (2014) 659 (https://doi.org/10.2298/JSC131004147T)

L. Casali, L. Mazzei, O. Shemchuk, K. Honer, F. Grepioni, S. Ciurli, D. Braga, J. Baltrusaitis, Chem. Commun. 54 (2018) 7637 (https://doi.org/10.1039/C8CC03777A)

L. H. Stocker, PhD Thesis, University of Maryland, 2013 (http://hdl.handle.net/1903/14523)

N. Yahya, Green Urea For Future Sustainability, Springer Nature Singapore Pte Ltd., Singapore, 2018 (https://doi.org/10.1007/978-981-10-7578-0)

Z. Yao, X. Zheng, Y. Zhang, C. Liu, R. Wang, S. Lin, Q. Zuo, K. Butterbach-Bahl, Sci. Rep. 7 (2017) 11415 (https://doi.org/10.1038/s41598-017-11772-2)

M. Y. Naz, S. A. Sulaiman, Rev. Chem. Eng. 33 (2017) 293 (https://doi.org/10.1515/revce-2015-0065)

D. Leong, D. D. Lasic, in, Handbook of Nonmedical Appl. Liposomes, Vol III, From Des. to Microreactors, Y. Barenholz, D. D. Lasic (Eds.), CRC Press, Boca Raton, FL, 2018, pp. 31–42 (ISBN 0-8493-4012-8)

S. A. Agnihotri, K. S. Soppimath, G. V. Betageri, Drug Deliv. 17 (2010) 92 (https://doi.org/10.3109/10717540903509027)

D. J. A. Crommelin, N. J. Zuidam, in Liposome Technol. Vol. I Liposome Prep. Relat. Tech., G. Gregoriadis (Ed.),Third ed., Informa Healthcare Inc., New York, 2007, pp. 285–295 (https://doi.org/295. 10.1201/9781351074124)

D. D. Jurašin, S. Šegota, V. Čadež, A. Selmani, M. S. Dutour, in Appl. Charact. Surfactants, R. Najjar (Ed.), Intech Open, 2017, p. 13 (http://dx.doi.org/10.5772/67998)

A. Gavina, S. Bouguerra, I. Lopes, C. R. Marques, M. G. Rasteiro, F. Antunes, T. Rocha-Santos, R. Pereira, Sci. Total Environ. 547 (2016) 413 (https://doi.org/10.1016/j.scitotenv.2015.12.163)

G. Kuhnt, Environ. Toxicol. Chem. 12 (1993) 1813 (https://doi.org/10.1002/etc.5620121007)

M. Dubois, B. Demé, T. Gulik-Krzywicki, J. C. Dedieu, C. Vautrin, S. Désert, E. Perez, T. Zemb, Nature 411 (2001) 672 (https://doi.org/10.1038/35079541)

P. Andreozzi, S. S. Funari, C. La Mesa, P. Mariani, M. G. Ortore, R. Sinibaldi, F. Spinozzi, J. Phys. Chem., B 114 (2010) 8056 (https://doi.org/10.1021/jp100437v)

S. Stagnoli, M. A. Luna, C. C. Villa, F. Alustiza, A. Niebylski, F. Moyano, N. M. Correa, RSC Adv. 7 (2017) 5372 (https://doi.org/10.1039/c6ra27020d)

H. Fauser, Phd Thesis, Technischen Universität Berlin, 2015 (http://dx.doi.org/10.14279/depositonce-5037)

J. D. Giraldo, B. L. Rivas, J. Chil. Chem. Soc. 62 (2017) 3538 (http://dx.doi.org/10.4067/S0717-97072017000200023)

J. Valerio, S. Bernstorff, S. S. Funari, Eur. Pharm. J. 64 (2017) 24 (http://dx.doi.org/10.1515/afpuc-2017-0003)

D. Gui, S. Gupta, J. Xu, R. Zandi, S. Gill, I. C. Huang, A. L. N. Rao, U. Mohideen, J. Biol. Phys. 41 (2015) 135 (http://dx.doi.org/10.1007/s10867-014-9370-z)

N. J. Cho, L. Y. Hwang, J. J. R. Solandt, C. W. Frank, Materials (Basel) 6 (2013) 3294 (http://dx.doi.org/10.3390/ma6083294)

S. Nappini, S. Fogli, B. Castroflorio, M. Bonini, F. Baldelli Bombelli, P. Baglioni, J. Mater. Chem., B 4 (2016) 716 (http://dx.doi.org/10.1039/C5TB02191J)

N. A. Ritger, Philip L. Peppas, J. Control. Release 5 (1987) 23 (https://doi.org/10.1016/S0168-3659(03)00195-0)

M. P. Paarakh, P. A. N. I. Jose, C. M. Setty, G. V Peter, Int. J. Pharm. Res. Technol. 8 (2019) 12 (https://doi.org/20. 10.31838/ijprt/08.01.02)

S. W. H. Shah, K. Naeem, B. Naseem, S. S. Shah, Colloids Surface,s A 331 (2008) 227 (https://doi.org/10.1016/j.colsurfa.2008.08.009)

H. Kawamura, M. Manabe, Y. Miyamoto, Y. Fujita, S. Tokunaga, J. Phys. Chem. 93 (1989) 5536 (https://doi.org/10.1021/j100351a042)

K. Naeem, B. Naseem, S. S. Shah, S. W. H. Shah, Mater. Res. Express 4 (2017) 115402 (https://doi.org/10.1088/2053-1591/aa9798).