Pseudo zwitterionic microvesicles for sustained urea release

Iram Bibi, Tasleem Kousar, Syed Waqar Hussain Shah, Wajid Rehman, Farman Ali


Zwitterionic microvesicles formed by catanionic system based on sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide have been investigated for sustained urea release using UV-visible absorption spectroscopy. The change in variables such as temperature, sonication time and initial urea concentration was related to urea entrapment efficiency and release from microvesicles. Korsmeyer-Peppas model was applied to highlight release mechanism and kinetics. Both diffusion and erosion were responsible for urea release and rate constant varied with change in conditions. The quantification of association between urea and catanionic vesicles in terms of binding constant (Kbin) and binding free energy showed that urea binding was thermodynamically favored. Our results indicate that biocompatible pseudo-zwitterionic vesicles have enormous potential to act as sustained release system for nitrogenous fertilizers such as urea.


controlled-release; surfactant vesicles; fertilizer

Full Text:

PDF (1,192 kB)


O. León, A. Muñoz-Bonilla, D. Soto, J. Ramirez, Y. Marquez, M. Colina, M. Fernández-García, J. Polym. Environ. 26 (2018) 728–739. 739 (

C. O. Dimkpa, P. S. Bindraban, J. Agric. Food Chem. 66 (2018) 6462–6473 (

X. Yu, B. Li, Particuology 45 (2019) 124–130 (

R. KiranTiwari, S. Krishnamoorthi, K. Kumar, J. Environ. Chem. Eng. 7 (2019) 103162 (

H. H. Ku, K. Hayashi, R. Agbisit, G. Villegas-Pangga, Sci. Total Environ. 601–602 (2017) 1254–1262 (

C. Tolescu, I. Fierascu, C. Neamtu, I. Anton, R. C. Fierascu, J. Serbian Chem. Soc. 79 (2014) 659–668 (

L. Casali, L. Mazzei, O. Shemchuk, K. Honer, F. Grepioni, S. Ciurli, D. Braga, J. Baltrusaitis, Chem. Commun. 54 (2018) 7637–7640 (

L. H. Stocker, Catanionic Surfactant Vesicles: Technology For Vaccine Development And Targeted Drug Delivery Applications, PhD Thesis, University of Maryland, USA, 2013 (

N. Yahya, Green Urea For Future Sustainability, Springer Nature Singapore Pte Ltd., 2018 (

Z. Yao, X. Zheng, Y. Zhang, C. Liu, R. Wang, S. Lin, Q. Zuo, K. Butterbach-Bahl, Sci. Rep. 7 (2017) 11415 (

M. Y. Naz, S. A. Sulaiman, Rev. Chem. Eng. 33 (2017) 293–308 (

D. Leong, D. D. Lasic, Stability and stabilization of liposomes, in Y. Barenholz, D. D. Lasic (Eds.), Handb. Nonmedical Appl. LiposomesVol III From Des. to Microreactors, CRC Press, Taylor & Francis, FL, USA, 2018, pp. 31–42 (ISBN 0-8493-4012-8)

S. A. Agnihotri, K. S. Soppimath, G. V. Betageri, Drug Deliv. 17 (2010) 92–101 (

D. J. A. Crommelin, N. J. Zuidam, Hydrolysis of Phospholipids in Liposomes and Stability-Indicating Analytical Techniques, in G. Gregoriadis (Ed.), Liposome Technol. Vol. I Liposome Prep. Relat. Tech., Third Edit, Informa Healthcare USA, Inc, New York, 2007, pp. 285–295 ( 10.1201/9781351074124)

D. D. Jurašin, S. Šegota, V. Čadež, A. Selmani, M. S. Dutour, Recent Advances in Catanionic Mixtures, in Reza Najjar (Ed.), Appl. Charact. Surfactants, Intech Open, 2017, p. 13 (

A. Gavina, S. Bouguerra, I. Lopes, C. R. Marques, M. G. Rasteiro, F. Antunes, T. Rocha-Santos, R. Pereira, Sci. Total Environ. 547 (2016) 413–421. (

G. Kuhnt, Environ. Toxicol. Chem. 12 (1993) 1813–1820 (

M. Dubois, B. Demé, T. Gulik-Krzywicki, J. C. Dedieu, C. Vautrin, S. Désert, E. Perez, T. Zemb, Nature 411 (2001) 672–675 (

P. Andreozzi, S. S. Funari, C. La Mesa, P. Mariani, M. G. Ortore, R. Sinibaldi, F. Spinozzi, J. Phys. Chem. B 114 (2010) 8056–8060 (

S. Stagnoli, M. A. Luna, C. C. Villa, F. Alustiza, A. Niebylski, F. Moyano, N. M. Correa, RSC Adv. 7 (2017) 5372–5380 (

H. Fauser, Surface Adsorption of Oppositely Charged Surfactant and Surfactant-Polyelectrolyte mixtures and the Relatioin to Fam Film Formation and Stability, Phd Thesis, Technischen Universität Berlin, Germany, 2015 (

J. D. Giraldo, B. L. Rivas, J. Chil. Chem. Soc. 62 (2017) 3538–3542 (

J. Valerio, S. Bernstorff, S. S. Funari, Eur. Pharm. J. 64 (2017) 24–27 (

D. Gui, S. Gupta, J. Xu, R. Zandi, S. Gill, I. C. Huang, A. L. N. Rao, U. Mohideen, J. Biol. Phys. 41 (2015) 135–149 (

N. J. Cho, L. Y. Hwang, J. J. R. Solandt, C. W. Frank, Materials (Basel). 6 (2013) 3294–3308 (

S. Nappini, S. Fogli, B. Castroflorio, M. Bonini, F. Baldelli Bombelli, P. Baglioni, J. Mater. Chem. B 4 (2016) 716–725 (

N. A. Ritger, Philip L. Peppas, J. Control. Release 5 (1987) 23–36 (

M. P. Paarakh, P. A. N. I. Jose, C. M. Setty, G. V Peter, Int. J. Pharm. Res. Technol. 8 (2019) 12–20 ( 10.31838/ijprt/08.01.02)

S. W. H. Shah, K. Naeem, B. Naseem, S. S. Shah, Colloids Surfaces A Physicochem. Eng. Asp. 331 (2008) 227–231 (

H. Kawamura, M. Manabe, Y. Miyamoto, Y. Fujita, S. Tokunaga, J. Phys. Chem. 93 (1989) 5536–5540 (

3K. Naeem, B. Naseem, S. S. Shah, S. W. H. Shah, Mater. Res. Express 4 (2017) 115402 (


Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)