Study of carbon dioxide and methane adsorption on carbon molecular sieves, raw and modified by waste engine oil

Authors

  • Reza Zahedi Department of Environment, Damavand Branch, Islamic Azad University, Damavand https://orcid.org/0000-0001-9280-4134
  • Hossein Ghafourian Department of Environment Engineering, Tehran North Branch, Islamic Azad University, Tehran
  • Yahya Zamanil Gas Research Division Research Institute of Petroleum Industry (RIPI), Tehran
  • Shahrzad Khoramnejhadian Department of Environment, Damavand Branch, Islamic Azad University, Damavand
  • Reza Dabbagh Materials & Nuclear Fuel Research School, Nuclear Sciences & Technology Research Institute, (NSTRI), Tehran

DOI:

https://doi.org/10.2298/JSC190904012Z

Keywords:

adsorption capacity, carbon molecular sieve (CMS), impregnated adsorbents, acid treated adsorbent

Abstract

In this study, a carbon molecular sieve (CMS) was synthesized from walnut shells, followed by physical activation of the carbon content of the CMS. Adsorption of CO2 and CH4 onto raw and acid treated adsorbents were investigated using two sizes, 300–600 and 600–1180 mm. The adsorbents were impregnated with two solvent mixtures of waste engine oil with kerosene and with thinner at a proportion of 1:1 at 25 °C. The highest adsorption for CO2 and CH4 was obtained at the suitable size of a group of CMS(A) adsorbents, with acid treated adsorbents being more efficient than the raw adsorbents. The acid treated CMS(A-3) sample adsorbed 0.925 mol CO2 g-1 and 0.353 mol CH4 g-1. The results indicated that by decreasing the granulation size of group CMS(R) adsorbents, the adsorption capacities for CO2 and CH4 were reduced while increasing the granulation size of group CMS(A) adsorbents resulted in an enhancement in the adsorption capacity for CO2 and CH4. Moreover, acid treated adsorbents achieved enhanced adsorption capacity for CO2 and CH4. Further modifications reduced the adsorption capacity for CO2 and CH4 in impregnated adsorbents, due to a decrease in surface area, pore volume and pore size of the adsorbent.

References

J. Soon Tan, F. Nasir Ani, Sep. Purif. Technol. 35 (2004) 47 (https://doi.org/10.1016/S1383-5866(03)00115-1)

T. Orfanoudaki, G. Skodras, I. Dolios, G.P. Sakellaropoulos, Fuel 82 (2003) 2045 (https://doi.org/10.1016/S0016-2361(03)00172-8)

T. Horikawa, J. Hayashi, K. Muroyama, Carbon 40 (2002) 709 (https://doi.org/10.1016/S0008-6223(01)00157-9)

R. Arriagada, G. Bello, R. Garcia, F. Rodriguez-Reinoso, A. Sepulveda-Escribano, Micropor. Mesopor. Mat. 81 (2005) 161 (https://doi.org/10.1016/j.micromeso.2005.02.005)

A. F. Ismail, L. I. B. David, Membr. Sci. 193 (2001) 1 (https://doi.org/10.1016/S0376-7388(01)00510-5)

E. Robens, in Studies in surface science and catalysis, A. Dabrowski, Ed., Elsevier, Amsterdam, 1999, p. 191 (https://doi.org/10.1002/vipr.19990110318)

W. Flank, T.Whyte, Perspectives in Molecular Sieves Science, American Chemical Society, Toronto, 1998 (https://doi.org/10.1021/bk-1988-0368)

O. Ioannidou. A. Zabaniotou, Renew. Sust. Energy Rev. 11 (2007) 1966 (https://doi.org/10.1016/j.rser.2006.03.013)

A. Aygun, S. Yenisoy-Karakas, I. Duman, Micropor. Mesopor. Mat. 66 (2003) 189 (https://doi.org/10.1016/j.micromeso.2003.08.028)

M. K. B. Gratuito, T. Panyathanmaporn, R.-A. Chamnanklang, N. Sirinuntawittaya, A. Dutta, Bioresour. Technol. 99 (2008) 4887 (https://doi.org/10.1016/j.biortech.2007.09.042)

S. Ucar, M. Erdem, T. Tay, S. Karagoz, Appl. Surf. Sci. 255 (2009) 8890 (https://doi.org/10.1016/j.apsusc.2009.06.080)

D. Kalderis, S. Bethanis, P. Paraskeva, E. Diamadopoulos, Bioresour. Technol. 99 (2008) 6809 (https://doi.org/10.1016/j.biortech.2008.01.041)

K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, J. Colloid. Interface. Sci. 262 (2003) 194 (https://doi.org/10.1016/S0021-9797(03)00108-5)

R. C. Bansal, M. Goyal, Activated Carbon Adsorption, CRC Press, New York, 2005 (https://doi.org/10.1201/9781420028812)

X. Song, L. Wang, X. Ma, Y. Zeng, Appl. Surf. Sci. 396 (2017) 870 (http://dx.doi.org/10.1016/j.apsusc.2016.11.050)

Y. Park, D. K. Moon, D. Park, M. Mofarahi, C.-H. Lee, Sep. Purif. Technol. 212 (2018) 952 (https://doi.org/10.1016/j.seppur.2018.11.069)

Z. Mousavi, H. R. Bozorgzadeh, Iran. J. Chem. Chem. Eng. 36 (2017) 71

L. A. M. Rocha, K. A. Andreassen, C. A. Grande, Chem. Eng. Sci. 164 (2017) 148 (https://doi.org/10.1016/j.ces.2017.01.071)

Zh. Yang, W. D. Wang, Zh. Meng, Y. Li, Sep. Purif. Technol. 218 (2019) 130 (https://doi.org/10.1016/j.seppur.2019.02.048)

S. M. Saufi, A. F. Ismail, Carbon 42 (2004) 241 (https://doi.org/10.1016/j.carbon.2003.10.022)

ASTM E0011: Specification for wire cloth and sieves for testing purposes (1996)

ASTM D1388: Test method for stiffness of fabrics (1996)

R. H. Perry, D. W. Green, Perry’s Chemical Engineer’s Handbook, McGraw Hill, New York, 1999

T. Kim, S. Vijayalakshmi, S. Jin, K. Dong, Indian J. Chem. Technol. 10 (2003) 298

D. Liu, H. Yi, X. Tang, Sh. Zhao, Z. Wang, F. Gao, Q. Li, B. Zhao, J. Chem. Eng. Data 61 (2018) 2197 (https://doi.org/10.1021/acs.jced.5b00742)

G. Watson, E. F. May, B. F. Graham, M. A. Trebble, R. D. Trengove, K. I. Chan. J. Chem. Eng. 54 (2009) 2701 (https://doi.org/10.1021/je900224w)

M. Văduva, V. Stanciu, UPB Sci. Bull., B: Chem. Mater. Sci. 69 (2007) 95 (https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full45363.pdf)

A. Arami-Niya, T. E. Rufford, G. Birkett, Z. Zhu, Micropor. Mesopor. Mat. 244 (2016) 218-225 (https://doi.org/10.1016/j.micromeso.2016.10.035)

A. Wahby, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Micropor. Mesopor. Mat. 164 (2012) 280-287 (http://dx.doi.org/10.1016/j.micromeso.2012.06.034).

Published

2020-08-25

How to Cite

[1]
R. Zahedi, H. Ghafourian, Y. Zamanil, S. Khoramnejhadian, and R. Dabbagh, “Study of carbon dioxide and methane adsorption on carbon molecular sieves, raw and modified by waste engine oil”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1083-1093, Aug. 2020.

Issue

Section

Environmental Chemistry