Study of carbon dioxide and methane adsorption on carbon molecular sieves, raw and modified by waste engine oil

Reza Zahedi, Hossein Ghafourian, Yahya Zamanil, Shahrzad Khoramnejhadian, Reza Dabbagh

Abstract


In this study, a carbon molecular sieve (CMS) was synthesized from walnut shells, followed by physical activation of the carbon content of the CMS. Adsorption of CO2 and CH4 onto raw and acid treated adsorbents were investigated using two sizes of 300-600 and 600-1180 mm. The adsorbents were impregnated with two solvent mixtures of waste engine oil with kerosene and with thinner with the proportion of 1:1 at 25 °C. The highest adsorption for CO2 and CH4 was obtained at the suitable size of a group of CMS (A) adsorbents, with acid treated adsorbents being more efficient than raw adsorbents. The acid treated CMS (A-3) sample adsorbed 0.925 mole CO2/g and 0.353 mole CH4/g. The results indicated that by decreasing the granulation size of group CMS (R) adsorbents, the adsorption capacities for CO2 and CH4 were reduced while increasing the granulation size of group CMS (A) adsorbents resulted in an enhancement in the adsorption capacity for CO2 and CH4. Moreover, acid treated adsorbents achieved enhanced adsorption capacity for CO2 and CH4. Further modifications have reduced the adsorption capacity for CO2 and CH4 in impregnated adsorbents, due to a decrease in surface area, pore volume and pore size of the adsorbent.


Keywords


Adsorption, Carbon Molecular Sieve (CMS), Activated Carbon, Modification, Gas Separation.

Full Text:

PDF (1,477 kB)

References


J. Soon Tan, F. Nasir Ani, Sep. Purif. Technol. 35 (2004) 47 (https://doi.org/10.1016/S1383-5866(03)00115-1)

T. Orfanoudaki, G. Skodras, I. Dolios, G.P. Sakellaropoulos, Fuel 82 (2003) 2045–2049 (https://doi.org/10.1016/S0016-2361(03)00172-8)

T. Horikawa, J. Hayashi, K. Muroyama, Carbon 40 (2002) 709 (https://doi.org/10.1016/S0008-6223(01)00157-9)

R. Arriagada, G. Bello, R. Garcia, F. Rodriguez-Reinoso, A. Sepulveda-Escribano, Microporous and Mesoporous Mater. 81 (2005) 161 (https://doi.org/10.1016/j.micromeso.2005.02.005)

A. F. Ismail, L. I. B. David, Membr. Sci. 193 (2001) 1 (https://doi.org/10.1016/S0376-7388(01)00510-5)

E. Robens, Adsorption and its applications in industry and environmental protection, in Studies in surface science and catalysis, A. Dabrowski (ed), Elsevier, Amsterdam, the Netherlands, 1999, p. 191 (https://doi.org/10.1002/vipr.19990110318)

W. Flank, T.Whyte, Perspectives in Molecular Sieves Science, American Chemical Society, Toronto, 1998 (https://doi.org/10.1021/bk-1988-0368)

O. Ioannidou. A. Zabaniotou, Renew. Sust. Energ. Rev. 11 (2007) 1966 (https://doi.org/10.1016/j.rser.2006.03.013)

Aygun, S. Yenisoy-Karakas, I. Duman, Micropor. Mesopor. Mat. 66 (2003) 189 (https://doi.org/10.1016/j.micromeso.2003.08.028)

M. K. B. Gratuito, T. Panyathanmaporn, R-A. Chamnanklang, N. Sirinuntawittaya, A. Dutta, Bioresour. Technol. 99 (2008) 4887 (https://doi.org/10.1016/j.biortech.2007.09.042)

S. Ucar, M. Erdem, T. Tay, S. Karagoz, Appl. Surf. Sci. 255 (2009) 8890 (https://doi.org/10.1016/j.apsusc.2009.06.080)

D. Kalderis, S. Bethanis, P. Paraskeva, E. Diamadopoulos, Bioresour. Technol. 99, (2008) 6809 (https://doi.org/10.1016/j.biortech.2008.01.041)

K. Okada, N. Yamamoto, Y. Kameshima, and A. Yasumori, J. Colloid. Interface. Sci. 262 (2003) 194 (https://doi.org/10.1016/S0021-9797(03)00108-5)

R. C. Bansal, M. Goyal, Activated Carbon Adsorption, CRC Press, New York, 2005 (https://doi.org/10.1201/9781420028812)

X. Song, L. Wang, X. Ma, Y. Zeng, Appl. Surf. Sci. 396 (2017) 870 (http://dx.doi.org/10.1016/j.apsusc.2016.11.050)

Y. Park, D. K. Moon, D. Park, M. Mofarahi, C-H. Lee, Sep. Purif. Technol. 212 (2018) 952 (https://doi.org/10.1016/j.seppur.2018.11.069)

Z. Mousavi, H. R. Bozorgzadeh, Iran. J. Chem. Chem. Eng. 36 (2017) 71

L. A. M. Rocha, K. A. Andreassen, C. A. Grande, Chem. Eng. Sci. 164 (2017) 148 (https://doi.org/10.1016/j.ces.2017.01.071)

Zh. Yang, W. D. Wang, Zh. Meng, Y. Li, Sep. Purif. Technol. 218 (2019) 130 (https://doi.org/10.1016/j.seppur.2019.02.048)

S.M. Saufi, A.F. Ismail, Carbon. 42 (2004) 241 (https://doi.org/10.1016/j.carbon.2003.10.022)

ASTM E0011: Specification for wire cloth and sieves for testing purposes (1996)

ASTM D1388: Test method for stiffness of fabrics (1996)

R. H. Perry, D. W. Green, Perry’s Chemical Engineer’s Handbook, McGraw Hill Company, New York,1999

T. Kim, S. Vijayalakshmi, S. Jin, K. Dong, Indian J. Chem. Technol. 10 (2003) 298

D. Liu, H. Yi, X. Tang, Sh. Zhao, Z. Wang, F. Gao, Q. Li, B. Zhao, J. Chem. Eng. Data 61(7) (2018) 2197 (https://doi.org/10.1021/acs.jced.5b00742)

G. Watson, E. F. May, B. F. Graham, M. A. Trebble, R. D. Trengove, K. I. Chan. J. Chem. Eng. 54 (2009) 2701 (https://doi.org/10.1021/je900224w)

M. Văduva, V. Stanciu, UPB Sci. Bull. B: Chem. Mater. Sci. 69 (2007) 95 (https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full45363.pdf)

A. Arami-Niya, T. E. Rufford, G. Birkett, Z. Zhu, Micropor. Mesopor. Mat. 244 (2016) 218-225 (https://doi.org/10.1016/j.micromeso.2016.10.035)

Wahby, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Micropor. Mesopor. Mat. 164 (2012) 280-287 (http://dx.doi.org/10.1016/j.micromeso.2012.06.034)




DOI: https://doi.org/10.2298/JSC190904012Z

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)